Answer:
The linear momentum of a particle with mass m moving with velocity v is defined as
p = mv (7.1)
Linear momentum is a vector . When giving the linear momentum of a particle you must
specify its magnitude and direction. We can see from the definition that its units must be
kg·m
s
. Oddly enough, this combination of SI units does not have a commonly–used named so
we leave it as kg·m
s
!
The momentum of a particle is related to the net force on that particle in a simple way;
since the mass of a particle remains constant, if we take the time derivative of a particle’s
momentum we find
dp
dt = m
dv
dt = ma = Fnet
so that
Fnet =
dp
dt (7.2)
Answer: AB-> A+B
Explanation:
Chemical decomposition is the breakdown of a single entity into two or more fragments. Chemical decomposition is usually regarded and defined as the exact opposite of chemical synthesis. In short, the chemical reaction in which two or more products are formed from a single reactant is called a decomposition reaction.
Answer:
True.
Explanation:
A diode, which allows current to flow in one direction only, consists of two types of semiconductors joined together.
A semiconductor can be defined as a crystalline solid substance that has its conductivity lying between that of a metal and an insulator, due to the effects of temperature or an addition of an impurity. Semiconductors are classified into two main categories;
1. Extrinsic semiconductor.
2. Intrinsic semiconductor.
An intrinsic semiconductor is a crystalline solid substance that is in its purest form and having no impurities added to it. Examples of intrinsic semiconductor are Germanium and Silicon.
In an intrinsic semiconductor, the number of free electrons is equal to the number of holes. Also, in an intrinsic semiconductor the number of holes and free electrons is directly proportional to the temperature; as the temperature increases, the number of holes and free electrons increases and vice-versa.
In an intrinsic semiconductor, each free electrons (valence electrons) produces a covalent bond.
Answer:
0.006075Joules
Explanation:
The final kinetic energy of the system is expressed as;
KE = 1/2(m1+m2)v²
m1 and m2 are the masses of the two bodies
v is the final velocity of the bodies after collision
get the final velocity using the law of conservation of momentum
m1u1 + m2u2 = (m1+m2)v
0.12(0.45) + 0/12(0) = (0.12+0.12)v
0.054 = 0.24v
v = 0.054/0.24
v = 0.225m/s
Get the final kinetic energy;
KE = 1/2(m1+m2)v
KE = 1/2(0.12+0.12)(0.225)²
KE = 1/2(0.24)(0.050625)
KE = 0.12*0.050625
KE = 0.006075Joules
Hence the final kinetic energy of the system is 0.006075Joules
Answer:
B. Marginal cost equals long-run average total cost.
Explanation:
The zero profit condition implies that entry continues until all firms are producing at minimum long run average total cost. Since the marginal cost curve cuts the long run average total cost curve at its minimum point, marginal cost and long run average total cost must be equal in long run equilibrium.