Answer:
Explanation:
Speed is defined as the rate at which an object covers a particular distance. So the formula for determining speed is given as the ratio of distance to time taken for covering that distance.
Speed = Distance/Time
As here the distance is given in km units and time in s units, so the units of any one parameter should be changed. Since we know that speed of sound is always about 300 m/s. So it is better to convert the unit of distance from km to m.
Hence, now the distance traveled by the noise is 2000 m and time taken is 5.8 s.
So the speed of noise = Distance/Time = 2000/5.8=345 m/s.
Thus, the speed of noise is slightly greater than the speed of sound and it is found to be 345 m/s.
Answer: 888.45 K or 615.3 °c
Explanation:
According to Gay Lussacs law which states that at constant volume, pressure of an ideal gas is directly proportional to it's absolute temperature.
P/T = Constant
Therefore, P1/T1 = P2/T2
P1 = 6.7 atm
T1= 23°c = 273.15 + 23 = 296.15K
Since P2 is tripled, then,
P2 = 6.7 x 3= 20.1 atm
T2 = (20.1 x 296.15) ÷ 6.7
T2 = 888.45 K
Or in celcius 615.3°c
When an object absorbs an amount of energy equal to Q, its temperature raises by

following the formula

where m is the mass of the object and

is the specific heat capacity of the material.
In our problem, we have

,

and

, so we can re-arrange the formula and substitute the numbers to find the specific heat capacity of the metal:
Answer : The momentum of ball is, 15 kg.m/s
Explanation :
Momentum : It is defined as the motion of a moving body. Or it is defined as the product of mass of velocity of an object.
Formula of momentum is:
where,
p = momentum = ?
m = mass = 1.5 kg
v = velocity = 10 m/s
Now put all the given values in the above formula, we get:
Therefore, the momentum of ball is 15 kg.m/s