Answer:

Explanation:
First of all we need to calculate the heat that the water in the cooler is able to release:

Where:
- Cp is the mass heat capacity of water
- V is the volume
is the density


To calculate the mass of CO2 that sublimes:

Knowing that the enthalpy of sublimation for the CO2 is: 


Answer:
1. Changing Beam Material
2. Corrugation
3. Changing Beam form
4. Steel Reinforcing Bars
Explanation:
Changing Beam Material
Some materials are stronger when used in beams than others. Beams made of steel for instance are stronger than beams made of wood. Therefore changing material can improve the strength of the beam. It is quite important to take into account the weights of the material though as different structures have different requirements.
Corrugation.
You can fold the beam into triangular shapes to increase strength. If you look at roofs you will notice that they are folded and this increased their strength. The same logic can be applied to beams.
Changing Beam Form
Another way to make Beams stronger is to change their form or rather their shape. Straight beams are not as strong as I-beams for instance. I-beams look like the capital letter I with the lines at both ends. I-beams are usually used in construction which shows that they are quite strong.
Steel Reinforcing Bars
When placed in concrete beams, Steel Reinforcing Bars which are also called Rebar can help strengthen a beam by helping it withstand the forces of tension. A concrete beam with Rebar inside it is known as Reinforced Concrete.
Rubisco is an important enzyme that helps in making lifeless carbon of carbon dioxide into organic molecules. Rubisco takes carbon dioxide and attaches it to ribulose bisphosphate, a
short sugar chain with five carbon atoms that has rubp as its shortcut. Rubisco then clips the
lengthened chain into to polyglycerate pices, which are pretty flexible molecules and are also used in the feeding of the plant. Most of it is used in the photosynthesis pathway, but some of it is used to make sucrose
(table sugar) to feed the rest of the plant, or stored away in the form
of starch for later use. Hence, rubisco is crucial in the storing of the energy that is created from photosynthesis.
Answer:
0.5 M
Explanation:
From the question given above, the following data were obtained:
Mass of NaOH = 80 g
Volume of solution = 4 L
Molarity =?
Next, we shall determine the number of mole in 80 g of NaOH. This can be obtained as follow:
Mass of NaOH = 80 g
Molar mass of NaOH = 23 + 16 + 1
= 40 g/mol
Mole of NaOH =?
Mole = mass / molar mass
Mole of NaOH = 80 / 40
Mole of NaOH = 2 moles
Finally, we shall determine the molarity of the solution. This can be obtained as follow:
Mole of NaOH = 2 moles
Volume of solution = 4 L
Molarity =?
Molarity = mole / Volume
Molarity = 2/4
Molarity = 0.5 M
Therefore, the molarity of the solution is 0.5 M.
Answer:

Explanation:
Hello there!
In this case, according to the given information, it turns out possible to set up the following energy equation for both objects 1 and 2:

In terms of mass, specific heat and temperature change is:

Now, solve for the final temperature, as follows:

Then, plug in the masses, specific heat and temperatures to obtain:

Yet, the values do not seem to have been given correctly in the problem, so it'll be convenient for you to recheck them.
Regards!