Answer:
Dude im not 100% sure but I think its b and c im sorry if im wrong its just that im not really sure which ones are.
Explanation:
Answer:
[N₂] = 0.032 M
[O₂] = 0.0086 M
Explanation:
Ideal Gas Law → P . V = n . R . T
We assume that the mixture of air occupies a volume of 1 L
78% N₂ → Mole fraction of N₂ = 0.78
21% O₂ → Mole fraction of O₂ = 0.21
1% another gases → Mole fraction of another gases = 0.01
In a mixture, the total pressure of the system refers to total moles of the mixture
1 atm . 1L = n . 0.082L.atm/mol.K . 298K
n = 1 L.atm / 0.082L.atm/mol.K . 298K → 0.0409 moles
We apply the mole fraction to determine the moles
N₂ moles / Total moles = 0.78 → 0.78 . 0.0409 mol = 0.032 moles N₂
O₂ moles / Total moles = 0.21 → 0.21 . 0.0409 mol = 0.0086 moles O₂
Basis of the calculation: 100g
For Carbon:
Mass of carbon = (100 g)(0.80) = 80 g
Number of moles of carbon = (80 g)(1 mole / 12g) = 20/3
For Hydrogen:
Mass of hydrogen = (100 g)(0.20) = 20 g
Number of moles of hydrogen = (20 g)(1 mole / 1 g) = 20
Translating the answer to the formula of the substance,
C20/3H20
Dividing the answer,
CH3
The molar mass of the empirical formula is:
12 + 3 = 15 g/mol
Since, the molar mass given for the molecular formula is 30.069 g/mol, the molecular equation is,
C2H6
ANSWER: C2H6
Answer:
10/9
Explanation:
First, let's convert 1/3 and 7/9 so that the have the same denominator. To do this let's find the least common multiple of 3 and 9.
List the multiples of 3 and 9:
3: 3, 9
9: 9
They have a least common multiple of 9
We need to convert 1/3 so it has a denominator of 9:
1/3*3/3 (we can multiply it by 3/3 because any number over itself is 1) = 3/9
s-3/9=7/9
Add 3/9 to both sides to isolate s
s=10/9