1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
abruzzese [7]
3 years ago
8

Arnold makes a chart to summarize what happens when light interacts with matter and is reflected. Which best describes Arnold’s

error? a. In specular reflection, reflected rays move in the same direction. b. In scattering, short wavelengths are scattered the least. c. In diffuse reflection, reflected rays move in the same direction. d. The law of reflection is not followed in scattering.
Physics
2 answers:
Svetllana [295]3 years ago
4 0

Answer:

The correct answer is d.

Explanation:

The law of reflection states that an incident ray on a reflecting surface will be reflected at an angle equal to the angle of incidence, where each angle is measured concerning the line normal to the surface.

In the graph that indicates what happens when light interacts with matter and is reflected, you make the mistake of not following the law of reflection in scattering.

Have a nice day!

Leokris [45]3 years ago
3 0

Answer:

D) The law of reflection is not followed in scattering

Explanation:

Just took the unit review on edgen and got this right

Have a nice day :)

You might be interested in
Rahul wants to change the motion map shown so that it shows uniform circular motion. What change should Rahul make?
saw5 [17]

Answer:

B. He should change the lengths of the vectors that point tangent to the circle so that each is the same length.

Explanation:

A uniform circular motion is a motion in a circle where the tangential speed of the object is constant.

In the motion map:

- The arrows pointing towards the centre of the circle represent the centripetal acceleration, and their length represent the magnitude of the acceleration

- The arrows pointing tangential to the circle represent the tangential speed, and their length represent the magnitude of the speed

In this motion map, we see that the length of the vectors pointing tangent to the circle is not constant: this means that the speed is not constant. In order to have a uniform circular motion, the speed must be constant, therefore the lengths of the vectors that point tangent to the circle must be the same.

6 0
3 years ago
Read 2 more answers
Two gliders on an air track collide in a perfectly elastic collision. Glider A has a mass of 1.1 kg and is initially travelling
Eva8 [605]

m1= mass 1 = 1.1 kg

Vi1 = initial velocity 1 = 2.7 m/s

m2= 2.4 kg

V2i = -1.9 m/s

We assume east as positive and west as negative.

Apply the formulas:

Vf1 = ?

vf1=(\frac{m1-m2}{m1+m2})Vi1+(\frac{2m2}{m1+m2})Vi2

Replacing:

Vf1=\frac{(1.1-2.4)}{(1.1+2.4)}2.7+\frac{(2\times2.4)}{(1.1+2.4)}-1.9Vf1=(\frac{-1.3}{3.5})2.7+(\frac{4.8}{3.5})-1.9Vf1=-1-2.6=-3.6\text{ m/s}

Answer: 3.6 m/s west

6 0
1 year ago
A thin spherical shell has a radius of 0.70 m. An applied torque of 860 N m gives the shell an angular acceleration of 4.70 rad/
Artyom0805 [142]

Answer:

I=182.97\ kg-m^2

Explanation:

Given that,

Radius of a spherical shell, r = 0.7 m

Torque acting on the shell, \tau=860\ N

Angular acceleration of the shell, \alpha =4.7\ m/s^2

We need to find the rotational inertia of the shell about the axis of rotation. The relation between the torque and the angular acceleration is given by :

\tau=I\alpha

I is the rotational inertia of the shell

I=\dfrac{\tau}{\alpha }\\\\I=\dfrac{860}{4.7}\\\\I=182.97\ kg-m^2

So, the rotational inertia of the shell is 182.97\ kg-m^2.

7 0
3 years ago
When two objects collide their momentum after the collision is explained by what
pashok25 [27]
The statement to every reacting there is, there is a opposite and same reacting. 
hope it helps
8 0
3 years ago
In 1999, Robbie Knievel was the first to jump the Grand Canyon on a motorcycle. At a narrow part of the canyon (65 m wide) and t
vfiekz [6]

Answer:

His launching angle was 14.72°

Explanation:

Please, see the figure for a graphic representation of the problem.

In a parabolic movement, the velocity and displacement vectors are two-component vectors because the object moves along the horizontal and vertical axis.

The horizontal component of the velocity is constant, while the vertical component has a negative acceleration due to gravity. Then, the velocity can be written as follows:

v = (vx, vy)

where vx is the component of v in the horizontal and vy is the component of v in the vertical.

In terms of the launch angle, each component of the initial velocity can be written using the trigonometric rules of a right triangle (see attached figure):

sin angle = opposite / hypotenuse

cos angle = adjacent / hypotenuse

In our case, the side opposite the angle is the module of v0y and the side adjacent to the angle is the module of vx. The hypotenuse is the module of the initial velocity (v0). Then:

sin angle = v0y / v0  then: v0y = v0 * sin angle

In the same way for vx:

vx = v0 * cos angle

Using the equation for velocity in the x-axis we can find the equation for the horizontal position:

dx / dt = v0 * cos angle

dx = (v0 * cos angle) dt (integrating from initial position, x0, to position at time t and from t = 0 and t = t)

x - x0 = v0 t cos angle

x = x0 + v0 t cos angle

For the displacement in the y-axis, the velocity is not constant because the acceleration of the gravity:

dvy / dt = g ( separating variables and integrating from v0y and vy and from t = 0 and t)

vy -v0y = g t

vy = v0y + g t

vy = v0 * sin angle + g t

The position will be:

dy/dt = v0 * sin angle + g t

dy = v0 sin angle dt + g t dt (integrating from y = y0 and y and from t = 0 and t)

y = y0 + v0 t sin angle + 1/2 g t²

The displacement vector at a time "t" will be:

r = (x0 + v0 t cos angle, y0 + v0 t sin angle + 1/2 g t²)

If the launching and landing positions are at the same height, then the displacement vector, when the object lands, will be (see figure)

r = (x0 + v0 t cos angle, 0)

The module of this vector will be the the total displacement (65 m)

module of r = \sqrt{(x0 + v0* t* cos angle)^{2} }  

65 m = x0 + v0 t cos angle ( x0 = 0)

65 m / v0 cos angle = t

Then, using the equation for the position in the y-axis:

y = y0 + v0 t sin angle + 1/2 g t²

0 =  y0 + v0 t sin angle + 1/2 g t²

replacing t =  65 m / v0 cos angle and y0 = 0

0 = 65m (v0 sin angle / v0 cos angle) + 1/2 g (65m / v0 cos angle)²  

cancelating v0:

0 = 65m (sin angle / cos angle) + 1/2 g * (65m)² / (v0² cos² angle)

-65m (sin angle / cos angle) = 1/2 g * (65m)² / (v0² cos² angle)  

using g = -9.8 m/s²

-(sin angle / cos angle) * (cos² angle) = -318.5 m²/ s² / v0²

sin angle * cos angle = 318.5 m²/ s² / (36 m/s)²

(using trigonometric identity: sin x cos x = sin (2x) / 2

sin (2* angle) /2 = 0.25

sin (2* angle) = 0.49

2 * angle = 29.44

<u>angle = 14.72°</u>

3 0
3 years ago
Other questions:
  • How does conserving and recycling paper help manage energy resources?
    7·1 answer
  • A theory is a way of explaining observations. true or false.
    8·2 answers
  • Which change is the best example of a physical change?
    11·1 answer
  • What is the net force of this object? A. 400 newtons B. 200 newtons C. 0 newtons D. 600 newtons @Dexteright02
    15·1 answer
  • A proton (mass=1.67x10^-27 kg, charge= 1.60x10^-19 C) moves from point A to point under the influence of an electrostatic force
    14·1 answer
  • Thermal energy transfers throughout the water in the beaker. Describe and explain how this happens?
    14·1 answer
  • How does an executive order differ from a statue?
    7·1 answer
  • The form of energy stored in food is known as
    11·2 answers
  • a specimen of oil having an initial volume of 5000cm³ is subjected to a pressure of 10⁴N/m² and the volume decreases by 0.20cm³.
    7·1 answer
  • A mechanical wave is created when a source of energy causes _____.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!