Answer:

Given:
Mass (m) = 3.0 kg
Uniform speed (v) = 20 m/s
Length of string (r) = 40 cm = 0.4 m
To Find:
Tension in the string (T)
Explanation:
Tension (T) is the string will be equal to centripetal force (
).

Substituting value of m, v & r in the equation:


Tension in the string (T) = 3 kN
As long as it sits on the shelf, its potential energy
relative to the floor is . . .
Potential energy = (mass) x (gravity) x (height) =
(3 kg) x (9.8 m/s²) x (0.8m) = <u>23.52 joules</u> .
If it falls from the shelf and lands on the floor, then it has exactly that
same amount of energy when it hits the floor, only now the 23.52 joules
has changed to kinetic energy.
Kinetic energy = (1/2) x (mass) x (speed)²
23.52 joules = (1/2) x (3 kg) x (speed)²
Divide each side by 1.5 kg : 23.52 m²/s² = speed²
Take the square root of each side: speed = √(23.52 m²/s²) = <em>4.85 m/s </em> (rounded)
Answer:
V is greater
Explanation:
because v intial at that time V final is the that speed which it is going at that time
Answer:
Balanced forces are equal and opposite forces that act on the same object. ... Action-reaction forces are equal and opposite forces that act on different objects, so they don't cancel out. In fact, they often result in motion.
Answer:
A thermos bottle works well because:
A) Its glass walls are thin