We have that the momentum p is given by the formula p=mv where m is the mass and v is the velocity. Since for A p=-14kgm/s and m=7, we have that the velocity is -14/7=-2m/s. Hence its speed is 2 m/s.
For b we have that p=15kgm/s and v=3m/s. Because m=p/v, we have m=3kg.
We also have that the momentum is conserved in this system. Hence, the net sum of the momentum of the 2 snowballs equals the momentum of the single giant ball. Hence, p(total)=p(combined)=-14+15=1kgm/s (momentum is a vector; the positive sign means that it tends to the positive direction).
Answer:
ramp b requires less force than ramp a
Explanation:
Answer:
The vertical distance is ![d = \frac{2}{k} *[mg + f]](https://tex.z-dn.net/?f=d%20%3D%20%5Cfrac%7B2%7D%7Bk%7D%20%2A%5Bmg%20%2B%20f%5D)
Explanation:
From the question we are told that
The mass of the cylinder is m
The kinetic frictional force is f
Generally from the work energy theorem

Here E the the energy of the spring which is increasing and this is mathematically represented as

Here k is the spring constant
P is the potential energy of the cylinder which is mathematically represented as

And
is the workdone by friction which is mathematically represented as

So

=> ![\frac{1}{2} * k * d^2 = d[mg + f ]](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B2%7D%20%2A%20k%20%20%2A%20%20d%5E2%20%3D%20%20d%5Bmg%20%2B%20%20f%20%20%20%20%5D)
=> ![\frac{1}{2} * k * d = [mg + f ]](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B2%7D%20%2A%20k%20%20%2A%20%20d%20%3D%20%20%5Bmg%20%2B%20%20f%20%20%20%20%5D)
=> ![d = \frac{2}{k} *[mg + f]](https://tex.z-dn.net/?f=d%20%3D%20%5Cfrac%7B2%7D%7Bk%7D%20%2A%5Bmg%20%2B%20f%5D)
Answer:
What does that even mean?
Explanation:
Answer:
The acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object
Explanation:
it's newton's second law