Answer:
.a = 849.05 m / s²
Explanation
The centripetal acceleration is
a = v² / r
Linear and angular velocity are related
v = w r
Angular velocity and frequency are related by
w = 2π f
Let's replace
a = w² r
a = 4π² f² r
Let's reduce to the SI system
f = 2.30 rev / s (2π rad / 1 rev) = 14.45 rad / s
.r = 10.3 cm = 0.103 m
Let's calculate
a = 4π² 14.45² 0.103
.a = 849.05 m / s²
They can fight the infection but not the disease
Answer:

Explanation:
Take at look to the picture I attached you, using Kirchhoff's current law we get:

This is a separable first order differential equation, let's solve it step by step:
Express the equation this way:

integrate both sides, the left side will be integrated from an initial voltage v to a final voltage V, and the right side from an initial time 0 to a final time t:

Evaluating the integrals:

natural logarithm to both sides in order to isolate V:

Where the term RC is called time constant and is given by:

If the period of a satellite is T=24 h = 86400 s that means it is in geostationary orbit around Earth. That means that the force of gravity Fg and the centripetal force Fcp are equal:
Fg=Fcp
m*g=m*(v²/R),
where m is mass, v is the velocity of the satelite and R is the height of the satellite and g=G*(M/r²), where G=6.67*10^-11 m³ kg⁻¹ s⁻², M is the mass of the Earth and r is the distance from the satellite.
Masses cancel out and we have:
G*(M/r²)=v²/R, R=r so:
G*(M/r)=v²
r=G*(M/v²), since v=ωr it means v²=ω²r² and we plug it in,
r=G*(M/ω²r²),
r³=G*(M/ω²), ω=2π/T, it means ω²=4π²/T² and we plug that in:
r³=G*(M/(4π²/T²)), and finally we take the third root to get r:
r=∛{(G*M*T²)/(4π²)}=4.226*10^7 m= 42 260 km which is the height of a geostationary satellite.
Complete Question:
Which process is not required for an animal to obtain energy from food?
a. Secretion.
b. Digestion.
c. Excretion.
d. Ingestion.
Answer:
c. Excretion.
Explanation:
Excretion is a metabolic process in which living organisms gets their system rid of metabolic waste, water and excess ions. This is usually done with the aid of kidney, skin and lungs in all vertebrates.
Example of excretions are urination, sweating and defecation.