<span>liquid A has a lower boiling point than liquid B
</span>
Answer:
15.06 × 10²³ atoms of Li
Explanation:
Given data:
Number of moles of Li = 2.5 mol
Number of toms of Li = ?
Solution:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
18 g of water = 1 mole = 6.022 × 10²³ molecules of water
1.008 g of hydrogen = 1 mole = 6.022 × 10²³ atoms of hydrogen
For 2.5 mol of Li:
1 mole of lithium = 6.022 × 10²³ atoms of Li
2.5 mol × 6.022 × 10²³ atoms of Li / 1 mol
15.06 × 10²³ atoms of Li
Answer:
0.35 V
Explanation:
(a) Standard reduction potentials
<u> E°/V</u>
Fe²⁺ + 2e- ⇌ Fe; -0.41
Cr³⁺ + 3e⁻ ⇌ Cr; -0.74
(b) Standard cell potential
<u> E°/V</u>
2Cr³⁺ + 6e⁻ ⇌ 2Cr; +0.74
<u>3Fe ⇌ 3Fe²⁺ + 6e-; </u> <u>-0.41
</u>
2Cr³⁺ + 3Fe ⇌ 2Cr + 3Fe²⁺; +0.33
3. Cell potential
2Cr³⁺(0.75 mol·L⁻¹) + 6e⁻ ⇌ 2Cr
<u>3Fe ⇌ 3Fe²⁺(0.25 mol·L⁻¹) + 6e-
</u>
2Cr³⁺(0.75 mol·L⁻¹) + 3Fe ⇌ 2Cr + 3Fe²⁺(0.25 mol·L⁻¹)
The concentrations are not 1 mol·L⁻¹, so we must use the Nernst equation

(a) Data
E° = 0.33 V
R = 8.314 J·K⁻¹mol⁻¹
T = 298 K
z = 6
F = 96 485 C/mol
(b) Calculations:
![Q = \dfrac{\text{[Fe}^{2+}]^{3}}{ \text{[Cr}^{3+}]^{2}} = \dfrac{0.25^{3}}{ 0.75^{2}} =\dfrac{0.0156}{0.562} = 0.0278\\\\E = 0.33 - \left (\dfrac{8.314 \times 298}{6 \times 96485}\right ) \ln(0.0278)\\\\=0.33 -0.00428 \times (-3.58) = 0.33 + 0.0153 = \textbf{0.35 V}\\\text{The cell potential is }\large\boxed{\textbf{0.35 V}}](https://tex.z-dn.net/?f=Q%20%3D%20%5Cdfrac%7B%5Ctext%7B%5BFe%7D%5E%7B2%2B%7D%5D%5E%7B3%7D%7D%7B%20%5Ctext%7B%5BCr%7D%5E%7B3%2B%7D%5D%5E%7B2%7D%7D%20%3D%20%5Cdfrac%7B0.25%5E%7B3%7D%7D%7B%200.75%5E%7B2%7D%7D%20%3D%5Cdfrac%7B0.0156%7D%7B0.562%7D%20%3D%200.0278%5C%5C%5C%5CE%20%3D%200.33%20-%20%5Cleft%20%28%5Cdfrac%7B8.314%20%5Ctimes%20298%7D%7B6%20%5Ctimes%2096485%7D%5Cright%20%29%20%5Cln%280.0278%29%5C%5C%5C%5C%3D0.33%20-0.00428%20%5Ctimes%20%28-3.58%29%20%3D%200.33%20%2B%200.0153%20%3D%20%5Ctextbf%7B0.35%20V%7D%5C%5C%5Ctext%7BThe%20cell%20potential%20is%20%7D%5Clarge%5Cboxed%7B%5Ctextbf%7B0.35%20V%7D%7D)
Answer:

Explanation:
Hello there!
In this case, given the solubilization of cadmium (II) hydroxide:

The solubility product can be set up as follows:
![Ksp=[Cd^{2+}][OH^-]^2](https://tex.z-dn.net/?f=Ksp%3D%5BCd%5E%7B2%2B%7D%5D%5BOH%5E-%5D%5E2)
Now, since we know the concentration of cadmium (II) ions at equilibrium and the mole ratio of these ions to the hydroxide ions is 1:2, we infer that the concentration of the latter at equilibrium is 3.5x10⁻⁵ M. In such a way, the resulting Ksp turns out to be:

Regards!