Because it contributes to the membrane potential
Answer:
is the rate constant for this reaction.
It will take
to concentration to reach 12.5% of its original value.
Explanation:
A decomposition reaction follows first order kinetics:
Half life of the reaction = 
Rate constant of the reaction = k
For first order reaction, half life and rate constant are linked with an expression :


is the rate constant for this reaction.
Initial concentration of reactant =
= x
Final concentration of reactant after time t =
= 12.5% of x = 0.125x
The integrated law of first order reaction :
![[A]=[A_o]\times e^{-kt}](https://tex.z-dn.net/?f=%5BA%5D%3D%5BA_o%5D%5Ctimes%20e%5E%7B-kt%7D)

t = 1,734.31 years =
It will take
to concentration to reach 12.5% of its original value.
The half reactions as they occur at each electrode
is as follows
at the anode Sn(s) =sn^2+(aq) + 2e -
at the cathode 2 ag^+(aq) + 2e - = 2Ag (s)
net cell reaction = Sn (s) + 2Ag^+(aq) = sn^2+ (aq) + 2 Ag (s)