The relationship between pH and pKa of buffer solution in given atomic view:
In figure I pH= pKa ( since [HA] =[A-] )
In figure II pH > pKa ( since [A-] > [HA] )
In figure III pH < pKa ( since [A-] < [HA] )
The pH and pKa are related by the Henderson-Hasselbalch equation. It should not be used for concentrated solutions, extremely low pH acids, or extremely high pH bases because it is simply an approximation.
pH = pKa + log(conjugate base/weak acid).
pH equals pKa plus log ([A-] / [HA]).
pH is determined by dividing the weak acid concentration by the log of the conjugate base concentration and the pKa value.
About halfway to the equivalence point:
pH = pKa
It's important to note that this equation is familiar with the connection because it is sometimes written for the Ka value rather than the pKa value.
pKa = – log Ka
Hence, value of pH depend on relative concentration of [A-] and HA]
To know more about Ka.
brainly.com/question/16035742
#SPJ4
Answer:
Electron shells surrounding the nucleus.
The answer is D because for light 3 to function switch d does not have to turn on
Answer:
Taking into account the definition of average atomic mass and isotopes of an element, the information that you need is the masses of its isotopes and their percent abundances.
Each chemical element is characterized by the number of protons in its nucleus, which is called the atomic number Z.
But in the nucleus of each element it is also possible to find neutrons, whose number can vary. The atomic mass (A) is obtained by adding the number of protons and neutrons in a given nucleus.
The same chemical element can be made up of different atoms, that is, their atomic numbers are the same, but the number of neutrons is different. These atoms are called isotopes of the element.
The atomic mass of an element is the weighted average mass of its natural isotopes. Therefore, the atomic mass of an element is not a whole number.
The weighted average means that not all isotopes have the same percentage.
In other words, the atomic masses of chemical elements are usually calculated as the weighted average of the masses of the different isotopes of each element, taking into account the relative abundance of each of them.
Explanation: