Answer:
VR = 
Explanation:
A machine is a device that can be used to overcome a load by the application of an effort through a pivot. Examples are: pulleys, wedge, screw jack, wheel and axle etc.
The wheel and axle is a simple device that can be used to lift a load through a height. Its velocity ratio (VR) can be determined by:
VR = 
Note that for a practical wheel and axle, the radius of the wheel is greater than the radius of the axle.
The bimetallic strip in a fire alarm is made of two metals with different expansion rates bonded together to form one piece of metal. Typically, the low-expansion side is made of a nickel-iron alloy called Invar, while the high-expansion side is an alloy of copper or nickel. The strip is electrically energized with a low-voltage current. When the strip is heated by fire, the high-expansion side bends the strip toward an electrical contact. When the strip touches that contact, it completes a circuit that triggers the alarm to sound. The width of the gap between the contacts determines the temperature that will set off the alarm.
Answer:
diameter = 21.81 ft
Explanation:
The gravitational force equation is:

Where:
- F => Gravitational force or force of attraction between two masses
- M => Mass of asteroid 1
- m => Mass of asteroid 2
- R => Distance between asteroids 1 and 2 (from center of gravity)
We also know that the asteroids are identical so their masses are identical:
Since R is the distance between centers of the two asteroids and their diameters are identical (see attachment), we can conclude that:
We don´t know the mass of the asteroids but we know they are composed of pure iron, so we can relate their masses to their density:
This is going to be helpful because the volume of a sphere is:
And know we can write our original force of gravity equation in terms of the radius of the asteroids:
Now let´s plug in the values we know:
mutual gravitational attraction force
gravitational constant
Solve for r and multiply by 2 because 2r = diameter
Result is d = 21.81 Feet