1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Artist 52 [7]
3 years ago
13

A jet engine for a supersonic transport (SST) propels the airplane at Mach 3 at an altitude of 50,000 ft where the temperature i

s 217°K and the ambient pressure is 0.115 atm. The maximum temperature that the advanced turbine blades can handle is 1900°K. The engine operates at a compressor pressure ratio that allows the engine to achieve maximum work. The temperature at the entrance to the compressor is 595.7K. Assume that γ = 1.4 and Cp = 1004 J/kg-°K throughout the engine. If the engine inlet isentropically slows down the incoming freestream air such that the Mach number of the flow just upstream of the compressor is 0.3,
a) How many stages should the aircraft engine compressor have if the compression pressure ratio of each stage is 1.2? b) Please plot the cycle on a T-s diagram labeling only the temperature at each point? c) What is the thermal efficiency of the engine? d) What is the absolute highest possible thermal efficiency one can expect from a machine operating within the range of temperatures involved in this problem? e) What is the amount of heat per unit mass of working fluid that is needed to be generated by the combustion of fuel in the engine burner?

Engineering
1 answer:
deff fn [24]3 years ago
7 0

Answer:

See attached file

You might be interested in
An automotive fuel has a molar composition of 85% ethanol (C2H5OH) and 15% octane (C8H18). For complete combustion in air, deter
slava [35]

Answer:

a) 1

b) 1813.96 MJ/kmol

c) 32.43 MJ/kg ,  1980.39 MJ/Kmol

Explanation:

molar mass of  ethanol (C2H5OH) = 46 g/mol

molar mass of   octane (C8H18) = 114 g/mol

therefore the moles of ethanol and octane

ethanol =  0.85 / 46

octane = 0.15 / 114

a) determine the molar air-fuel ratio and air-fuel ratio by mass

attached below

mass of air / mass of fuel = 12.17 / 1 = 12.17

b ) Determine the lower heating value

LHV  of  ( C2H5OH) = 26.8 * 46 = 1232.8 MJ/kmol

LHV  of (C8H18). = 44.8 mj/kg * 114 kg/kmol = 5107.2 MJ/Kmol

LHV ( MJ/kmol)  for fuel mixture = 0.85 * 1232.8 + 0.15 * 5107.2 = 1813.96 MJ/kmol

c) Determine higher heating value  ( HHV )

HHV of (C2H5OH) = 29.7 * 46 = 1366.2 MJ/kmol

HHV of C8H18 = 47.9 MJ/kg * 114 = 5460.6 MJ/kmol

HHV  in MJ/kg  = 0.85 * 29.7 + 0.15 * 47.9  = 32.43 MJ/kg

HHV in  MJ /kmol  =  0.85 * 1366.2 + 0.15 * 5460.8 = 1980.39 MJ/Kmol

4 0
3 years ago
Solve the questions in the picture
STatiana [176]
15x -/c/ fb is the answer
6 0
3 years ago
An aluminum block weighing 28 kg initially at 140°C is brought into contact with a block of iron weighing 36 kg at 60°C in an in
Anika [276]

Answer:

Equilibrium Temperature is 382.71 K

Total entropy is 0.228 kJ/K

Solution:

As per the question:

Mass of the Aluminium block, M = 28 kg

Initial temperature of aluminium, T_{a} = 140^{\circ}C = 273 + 140 = 413 K

Mass of Iron block, m = 36 kg

Temperature for iron block, T_{i} = 60^{\circ}C = 273 + 60 = 333 K

At 400 k

Specific heat of Aluminium, C_{p} = 0.949\ kJ/kgK

At room temperature

Specific heat of iron, C_{p} = 0.45\ kJ/kgK

Now,

To calculate the final equilibrium temperature:

Amount of heat loss by Aluminium = Amount of heat gain by Iron

MC_{p}\Delta T = mC_{p}\Delta T

28\times 0.949(140 - T_{e}) = 36\times 0.45(T_{e} - 60)

Thus

T_{e} = 109.71^{\circ}C = 273 + 109.71 = 382.71 K

where

T_{e} = Equilibrium temperature

Now,

To calculate the changer in entropy:

\Delta s = \Delta s_{a} + \Delta s_{i}

Now,

For Aluminium:

\Delta s_{a} = MC_{p}ln\frac{T_{e}}{T_{i}}

\Delta s_{a} = 28\times 0.949\times ln\frac{382.71}{413} = - 2.025\ kJ/K

For Iron:

\Delta s_{i} = mC_{i}ln\frac{T_{e}}{T_{i}}

\Delta s_{a} = 36\times 0.45\times ln\frac{382.71}{333} = 2.253\ kJ/K

Thus

\Delta s =-2.025 + 2.253 = 0.228\ kJ/K

6 0
3 years ago
A body whose velocity is constant has a. positive acceleration b. negative acceleration g. zero acceleration d. all of the above
adoni [48]

Answer:

option (c) is the correct answer which is zero acceleration.

Explanation:

It is given in the question that the velocity is constant.

Now,

the options are provided in relation to the acceleration.

We know,

acceleration is rate of change of velocity per unit time i.e

acceleration = \frac{dV}{dt}

since, the change in velocity is given to be zero,

thus, dV/dt = 0

hence,  

acceleration = 0

therefore, option (c) is the correct answer which is zero acceleration.

4 0
4 years ago
Join my talkroom it is called CJ
k0ka [10]

Answer:

Hello

Explanation:

5 0
3 years ago
Read 2 more answers
Other questions:
  • A meter stick can be read to the nearest millimeter and a travelling microscope can be read to the nearest 0.1 mm. Suppose you w
    11·1 answer
  • computer language C++ (Connect 4 game)( this is all the info that was givin no input or solution) I used the most recent version
    6·1 answer
  • The inlet and exhaust flow processes are not included in the analysis of the Otto cycle. How do these processes affect the Otto
    6·1 answer
  • Briefly describe the function of the thermostatic expansion valve in a vapour compression refrigeration system
    7·1 answer
  • A heat exchanger takes compressed liquid water and converts it into steam with a temperature and pressure of 20 Mpa and 480 C; r
    12·1 answer
  • A Carnot heat engine absorbs 235 KW of heat from a heat source and rejects 164 KW to the atmosphere. Determine the thermal effic
    7·1 answer
  • Describe a gear train that would transform a counterclockwise input rotation to a counterclockwise output rotation where the dri
    13·1 answer
  • A___ remote control can be an advantage to an
    14·2 answers
  • Component of earthing and reasons why each material is being used<br><br>​
    5·1 answer
  • Risks in driving never begins with yourself, but with other drivers who take risks.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!