Tell me why i got this question got it right and now won’t remember but i’ll get back at you when i remember
Answer:
V = 125.7m/min
Explanation:
Given:
L = 400 mm ≈ 0.4m
D = 150 mm ≈ 0.15m
T = 5 minutes
F = 0.30mm ≈ 0.0003m
To calculate the cutting speed, let's use the formula :

We are to find the speed, V. Let's make it the subject.

Substituting values we have:

V = 125.68 m/min ≈ 125.7 m/min
Therefore, V = 125.7m/min
Answer:
Amperes WB =<em> </em>
Explanation:
Amperes will flow back to the negative terminal because both the positive terminal and negative terminal contain the equivalent amount of current that will flow and it works in the starter motor.
To learn more about it, refer
to brainly.com/question/6561461
#SPJ4
Answer:
The PFR is more efficient in the removal of the reactive compound as it has the higher conversion ratio.
Xₚբᵣ = 0.632
X꜀ₘբᵣ = 0.5
Xₚբᵣ > X꜀ₘբᵣ
Explanation:
From the reaction rate coefficient, it is evident the reaction is a first order reaction
Performance equation for a CMFR for a first order reaction is
kτ = (X)/(1 - X)
k = reaction rate constant = 0.05 /day
τ = Time constant or holding time = V/F₀
V = volume of reactor = 280 m³
F₀ = Flowrate into the reactor = 14 m³/day
X = conversion
k(V/F₀) = (X)/(1 - X)
0.05 × (280/14) = X/(1 - X)
1 = X/(1 - X)
X = 1 - X
2X = 1
X = 1/2 = 0.5
For the PFR
Performance equation for a first order reaction is given by
kτ = In [1/(1 - X)]
The parameters are the same as above,
0.05 × (280/14) = In (1/(1-X)
1 = In (1/(1-X))
e = 1/(1 - X)
2.718 = 1/(1 - X)
1 - X = 1/2.718
1 - X = 0.3679
X = 1 - 0.3679
X = 0.632
The PFR is evidently more efficient in the removal of the reactive compound as it has the higher conversion ratio.