1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
OLEGan [10]
3 years ago
8

Many farms and ranches use electric fences to keep animals from getting into or out of specific pastures. When switched on, an e

lectric current is produced in the fence. When an animal touches the electrified fence, it receives a small shock. What material would be the best choice for making an effective electric fence, and why?
Engineering
2 answers:
Nikolay [14]3 years ago
7 0

Answer:

Aluminum

Explanation:

The best material to use when creating an electric fence would be Aluminum. Aluminum wiring is incredibly durable and can be easily obtained. Since aluminum is a non-magnetic metal its conducting capabilities far exceed other metallic options in the market and is also why companies choose aluminum for their high tension cable wiring. Aside from being more expensive than other feasible options its durability and conducting capabilities make it easily the best option.

madreJ [45]3 years ago
3 0

Answer:

Steel Wires

Explanation:

International house of pancakes

You might be interested in
: The interior wall of a furnace is maintained at a temperature of 900 0C. The wall is 60 cm thick, 1 m wide, 1.5 m broad of mat
Snowcat [4.5K]

Answer:

<em>Heat is lost at the rate of 750 J/s or W</em>

<em>The thermal resistance is 1 K/W</em>

Explanation:

interior temperature T_{2} = 900 °C

wall thickness t = 60 cm = 0.6 m

width = 1 m

breadth = 1.5 m

thermal conductivity k = 0.4 W/m-K

outside temperature T_{1} = 150 °C

heat through the wall = ?

The area of the wall A = w x b = 1 x 1.5 = 1.5 m^2

Temperature difference dt = T_{2} - T_{1} = 900 - 150 = 750 °C

note that dt is also equal to 750 K since to convert from °C to K we'll have to add 273 to both temperature, which will still cancel out when we subtract the two temperatures.

To get the heat that escapes through the wall, we use the equation

Q = Ak\frac{dt}{t}

substituting values, we have

Q = 1.5 x 0.4 x \frac{750}{0.6} = <em>750 J/s or W</em>

Thermal resistance R_{t} = \frac{dt}{Q}

R_{t} = 750/750 =<em> 1 K/W</em>

7 0
3 years ago
The yield strength of mild steel is 150 MPa for an average grain diameter of 0.038 mm ; yield strength is 250 MPa for average gr
djyliett [7]

Answer:

Explanation:

Hall-Petch equation provides direct relations between the strength of the material and the grain size:

σ=σ0+k/√d , where d- grain size, σ- strength for the given gran size, σ0 and k are the equation constants.

As in this problem, we don't know the constants of the equation, but we know two properties of the material, we are able to find them from the system of equations:

σ1=σ0+k/√d1

σ2=σ0+k/√d2 , where 1 and 2 represent 150MPa and 250MPa strength of the steel.

Note, that for the given problem, there is no need to convert units to SI, as constants can have any units, which are convenient for us.

From the system of equations calculations, we can find constant: σ0=55.196 MPa, k=18.48 MPa*mm^(0.5)

Now we are able to calculate strength for the grain diameter of 0.004 mm:

σ=55.196+18.48/(√0.004)=347.39 MPa

The strength of the steel with the grais size of 0.004 mm is 347.39 MPa.

6 0
3 years ago
If you touch a downed power line, covered or bare, what's the likely outcome?
olya-2409 [2.1K]

Answer:

you get electrocuted...........

5 0
3 years ago
Read 2 more answers
For the following conditions determine whether a CMFR or a PFR is more efficient in removing a reactive compound from the waste
andrew11 [14]

Answer:

The PFR is more efficient in the removal of the reactive compound as it has the higher conversion ratio.

Xₚբᵣ = 0.632

X꜀ₘբᵣ = 0.5

Xₚբᵣ > X꜀ₘբᵣ

Explanation:

From the reaction rate coefficient, it is evident the reaction is a first order reaction

Performance equation for a CMFR for a first order reaction is

kτ = (X)/(1 - X)

k = reaction rate constant = 0.05 /day

τ = Time constant or holding time = V/F₀

V = volume of reactor = 280 m³

F₀ = Flowrate into the reactor = 14 m³/day

X = conversion

k(V/F₀) = (X)/(1 - X)

0.05 × (280/14) = X/(1 - X)

1 = X/(1 - X)

X = 1 - X

2X = 1

X = 1/2 = 0.5

For the PFR

Performance equation for a first order reaction is given by

kτ = In [1/(1 - X)]

The parameters are the same as above,

0.05 × (280/14) = In (1/(1-X)

1 = In (1/(1-X))

e = 1/(1 - X)

2.718 = 1/(1 - X)

1 - X = 1/2.718

1 - X = 0.3679

X = 1 - 0.3679

X = 0.632

The PFR is evidently more efficient in the removal of the reactive compound as it has the higher conversion ratio.

3 0
3 years ago
No question but thx<br> reeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
jeka94

Answer:

why you doin this

Explanation:

is this so we get free points?

5 0
3 years ago
Read 2 more answers
Other questions:
  • The reverse water-gas shift (RWGS) reaction is an equimolar reaction between CO2 and H2 to form CO and H2O. Assume CO2 associati
    10·1 answer
  • NASA SPACE SHUTTLE QUESTION:
    14·1 answer
  • . H<br> Kijwhayhwbbwyhwbwbwgwwgbwbwhwh
    6·2 answers
  • Could I please get help with this​
    11·1 answer
  • How do you build a house.
    15·1 answer
  • What does it mean to test a hypothesis?
    13·1 answer
  • PLEASE HELPPPPPPP!!!!,
    10·2 answers
  • Two basic types of mechanical fuel injector systems?​
    13·2 answers
  • An American architect whose principles of building included consonance with the landscape was ____________________________.
    13·1 answer
  • It is possible to design a reactor where the scy conductor and the nitrogen/ammonia electrode operate at different temperatures.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!