Answer:
The answer is in the explanation.
Explanation:
A titration of H₂X with KOH produce:
H₂X + 2KOH → 2H₂O + K₂X
It is possible to obtain the moles of H₂X because the moles of KOH are the spent volume of the titration in liters × 0,455M. As for a complete titration of H₂X moles you need twice moles of KOH you know the moles of KOH obtained are half H₂X moles.
As you know the mass of the solid acid that you titrate and molar mass of acid is:
mass of acid / moles of acid. You can determine the molar mass of the unknown acid.
I hope it helps!
Answer:

Explanation:
<u>1. Convert Atoms to Moles</u>
We must use Avogadro's Number: 6.022*10²³. This is the number of particles (atoms, molecules, ions, etc.) in 1 mole of a substance. In this case, the particles are atoms of helium. We can create a ratio.

Multiply by the given number of helium atoms.

Flip the fraction so the atoms of helium cancel.



<u>2. Convert Moles to Grams</u>
We must use the molar mass, which is found on the Periodic Table.
Use this as a ratio.

Multiply by the number of moles we calculated. The moles will then cancel.



<u>3. Round </u>
The original measurement has 3 significant figures (5, 5, and 0). Our answer must have the same. For the number we calculated, it is thousandth place. The 3 in the ten thousandth place tells us to leave the 5.

The mass is <u>0.365 grams of helium</u> so choice A is correct.
44.0095 you're welcome hope this helps
Answer : The radii of the two ions Cl⁻ ion and Na⁺ ion is, 181 and 102 pm respectively.
Explanation :
As we are given that the Na⁺ radius is 56.4% of the Cl⁻ radius.
Let us assume that the radius of Cl⁻ be, (x) pm
So, the radius of Na⁺ = 
In the crystal structure of NaCl, 2 Cl⁻ ions present at the corner and 1 Na⁺ ion present at the edge of lattice.
Thus, the edge length is equal to the sum of 2 radius of Cl⁻ ion and 2 radius of Na⁺ ion.
Given:
Distance between Na⁺ nuclei = 566 pm
Thus, the relation will be:





The radius of Cl⁻ ion = (x) pm = 181 pm
The radius of Na⁺ ion = (0.564x) pm = (0.564 × 181) pm =102.084 pm ≈ 102 pm
Thus, the radii of the two ions Cl⁻ ion and Na⁺ ion is, 181 and 102 pm respectively.