Answer:
- a) 2N₂O(g) → 2N₂(g) + O₂(g)
Explanation:
Arrange the equations in the proper way for better understanding.
T<em>he reaction between nitrogen and oxygen is given below:</em>
<em />
- <em>2N₂(g) + O₂(g) → 2N₂O(g)</em>
<em />
<em>We therefore know that which of the following reactions can also occur?</em>
<em />
- <em>a) 2N₂O(g) → 2N₂(g) + O₂(g)</em>
- <em>b) N₂(g) + 2O₂(g) → 2NO₂(g)</em>
- <em>c) 2NO₂(g) → N₂(g) + 2O₂(g)</em>
- <em>d) None of the Above</em>
<h2>Solution</h2>
Notice that the first equation, a) 2N₂O(g) → 2N₂(g) + O₂(g), is the reverse of the original equation, 2N₂(g) + O₂(g) → 2N₂O(g).
The reactions in gaseous phase are reversible reactions that can be driven to one or other direction by modifying the conditions of temperature or pressure.
Thus, the equilibrium equation would be:
Which shows that both the forward and the reverse reactions occur.
Whether one or the other are favored would depend on the temperature and pressure: high temperatures would favor the reaction that consumes more heat (the endothermic reaction) and high pressures would favor the reaction that consumes more moles.
Thus, by knowing that one of the reactions can occur you can conclude that the reverse reaction can also occur.
Answer:
FALSE!
Explanation:
Gymnosperms do use seeds but are exposed like the pine cones of pines. Angiosperms still have seeds, however, they flower or fruit.
Solution :
lt is given that in 18 mL of water their are
water molecules.
We know, that 1 molecule of water contains 2 atoms of hydrogen.
Hydrogen atom in 18 mL water is,
.
So, number of hydrogen atoms in 1 L = 1000 mL are :

Hence, this is the required solution.
Answer:
A. Electrons from escaping from the tube containing the triode.
:)
Explanation: