Answer: The velocity at different marked time points are given as
t1 = -
t2 = +
t3 = +
t4 = -
t5 = 0
Explanation:
The slope of the tangent of the curve indicates the instantaneous velocity. So if the slope of the tangent is positive, that Is, the tangent makes a positive angle (above the horizontal axis) with the horizontal
axis, then the velocity at this point is positive, and if the slope of the tangent is negative, that is the tangent makes a negative angle with the horizontal axis (below the horizontal axis), then the velocity at this point is negative.
When the tangent of the line is parallel to the horizontal axis, the velocity is 0.
From the position-time graph attached, the sign on the instantaneous velocity for each time marked on the graph is given below
t1 = -
t2 = +
t3 = +
t4 = -
t5 = 0
QED!
The third one sliding friction
Explanation:
Either cyan bacteria or Precambrian time<span />
The acceleration of the object is
Explanation:
We can solve the problem by using Newton's second law, which states that the net force exerted on an object is equal to the product between the mass of the object and its acceleration:
where
F is the net force
m is the mass of the object
a is its acceleration
For the object in this problem,
F = 500 N is the applied force
m = 75 kg is the force
Solving the equation for a, we find the acceleration:
Learn more about Newton's second law:
brainly.com/question/3820012
#LearnwithBrainly
Answer:
Explained below
Explanation:
Newton's first law of motion: This law states that an object will remain at rest or continue in constant motion except it's acted upon by an external force. In projectile motion, the horizontal component of velocity will remain unchanged because we ignore air resistance since no force is acting in that horizontal direction.
Newton's second law of motion: This law states that force is the product of mass and acceleration. In projectile the force acts downwards, thus f = mg.
But g = a since internal forces will cancel out.
Thus, F = ma