1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
babymother [125]
2 years ago
11

An electron is emmited by an atomic nucleus in the process of...

Physics
2 answers:
Sliva [168]2 years ago
8 0
I’m pretty sure it’s Radioactive decay
harkovskaia [24]2 years ago
5 0
I think its some sort of decay

You might be interested in
The index of refraction of silicate flint glass for red light is 1.620 and for violet light is 1.660 . A beam of white light in
Sonja [21]

Answer:

10.16 degrees

Explanation:

Apply Snells Law for both wavelenghts

\(n_{1}sin\theta_{1} = n_{2}sin\theta_{2}\)

For red

(1.620)(sin 25.5) = (1)(sin r)

For red, the angle is 35.45degrees

For violet

(1.660)(sin 25.5) = (1)(sin v)

For violet, the angle is 45.6 degrees

The difference is 45.6- 35.45 = 10.16 degrees

3 0
3 years ago
Flapping flight is very energy intensive. A wind tunnel test
steposvetlana [31]

Answer:

The metabolic power for starting flight=134.8W/kg

Explanation:

We are given that

Mass of starling, m=89 g=89/1000=0.089 kg

1 kg=1000 g

Power, P=12 W

Speed, v=11 m/s

We have to find the metabolic power for starting flight.

We know that

Metabolic power for starting flight=\frac{P}{m}

Using the formula

Metabolic power for starting flight=\frac{12}{0.089}

Metabolic power for starting flight=134.8W/kg

Hence, the metabolic power for starting flight=134.8W/kg

4 0
3 years ago
What would happen if mass is continually added to a 1.4 solar mass neutron star?
andrey2020 [161]
Eventually wouldn't it collapse in on itself and create black hole.
8 0
3 years ago
Function of a simple pendulum​
Misha Larkins [42]

Answer:

A pendulum is a mechanical machine that creates a repeating, oscillating motion. A pendulum of fixed length and mass (neglecting loss mechanisms like friction and assuming only small angles of oscillation) has a single, constant frequency. This can be useful for a great many things.

From a historical point of view, pendulums became important for time measurement. Simply counting the oscillations of the pendulum, or attaching the pendulum to a clockwork can help you track time. Making the pendulum in such a way that it holds its shape and dimensions (in changing temperature etc.) and using mechanisms that counteract damping due to friction led to the creation of some of the first very accurate all-weather clocks.

Pendulums were/are also important for musicians, where mechanical metronomes are used to provide a notion of rhythm by clicking at a set frequency.

The Foucault pendulum demonstrated that the Earth is, indeed, spinning around its axis. It is a pendulum that is free to swing in any planar angle. The initial swing impacts an angular momentum in a given angle to the pendulum. Due to the conservation of angular momentum, even though the Earth is spinning underneath the pendulum during the day-night cycle, the pendulum will keep its original plane of oscillation. For us, observers on Earth, it will appear that the plane of oscillation of the pendulum slowly revolves during the day.

Apart from that, in physics a pendulum is one of the most, if not the most important physical system. The reason is this - a mathematical pendulum, when swung under small angles, can be reasonably well approximated by a harmonic oscillator. A harmonic oscillator is a physical system with a returning force present that scales linearly with the displacement. Or, in other words, it is a physical system that exhibits a parabolic potential energy.

A physical system will always try to minimize its potential energy (you can accept this as a definition, or think about it and arrive at the same conclusion). So, in the low-energy world around us, nearly everything is very close to the local minimum of the potential energy. Given any shape of the potential energy ‘landscape’, close to the minima we can use Taylor expansion to approximate the real potential energy by a sum of polynomial functions or powers of the displacement. The 0th power of anything is a constant and due to the free choice of zero point energy it doesn’t affect the physical evolution of the system. The 1st power term is, near the minimum, zero from definition. Imagine a marble in a bowl. It doesn’t matter if the bowl is on the ground or on the table, or even on top of a building (0th term of the Taylor expansion is irrelevant). The 1st order term corresponds to a slanted plane. The bottom of the bowl is symmetric, though. If you could find a slanted plane at the bottom of the bowl that would approximate the shape of the bowl well, then simply moving in the direction of the slanted plane down would lead you even deeper, which would mean that the true bottom of the bowl is in that direction, which is a contradiction since we started at the bottom of the bowl already. In other words, in the vicinity of the minimum we can set the linear, 1st order term to be equal to zero. The next term in the expansion is the 2nd order or harmonic term, a quadratic polynomial. This is the harmonic potential. Every higher term will be smaller than this quadratic term, since we are very close to the minimum and thus the displacement is a small number and taking increasingly higher powers of a small number leads to an even smaller number.

This means that most of the physical phenomena around us can be, reasonable well, described by using the same approach as is needed to describe a pendulum! And if this is not enough, we simply need to look at the next term in the expansion of the potential of a pendulum and use that! That’s why each and every physics students solves dozens of variations of pendulums, oscillators, oscillating circuits, vibrating strings, quantum harmonic oscillators, etc.; and why most of undergraduate physics revolves in one way or another around pendulums.

Explanation:

7 0
2 years ago
A finch rides on the back of a Galapagos tortoise, which walks at the stately pace of 0.060 m/s. After 1.1 minutes, the finch ti
Romashka [77]

Answer:

Average Speed = 6.37 m/s

Explanation:

The average speed is simply given by the following formula:

Average Speed = Total Distance Traveled/Total Time Spent

here,

Total Time Spent = 1.1 min + 1.5 min = (2.6 min)(60 s/min) = 156 s

Now, for total distance, we have to calculate the distance traveled on tortoise and distance traveled while flying, separately. Therefore,

Distance Traveled on Tortoise = (Time spent on Tortoise)(Speed of Tortoise)

Distance Traveled on Tortoise = (1.1 min)(60 s/min)(0.06 m/s) = 3.96 m

Similarly,

Flying Distance = (Flying Time)(Flying Speed) = (1.5 min)(60 s/min)(11 m/s)

Flying Distance =  990 m

Since, total distance is the sum of both distances, therefore,

Total Distance = 3.96 m + 990 m = 993.96 m

Now, using the values in equation of average speed, we get:

Average Speed = 993.96 m/156 s

<u>Average Speed = 6.37 m/s</u>

4 0
3 years ago
Other questions:
  • Write a speech about bringing back fidget toys because they're banned in school
    13·1 answer
  • A student discovers that sound waves travel 1,687.5 meters in 5 seconds through air at a temperature of 10°C. Based on this info
    11·1 answer
  • What is the compare the strength of static,sliding,and rolling friction
    13·1 answer
  • A man of mass 50kg ascends a flight of stairs 5m high in 5seconds. If acceleration due to gravity is 10ms-2 the power expended i
    10·2 answers
  • The _______ is responsible for determining the frequency of vibration of the air column in the tube within a wind instrument.
    10·1 answer
  • How does the law of conservation of energy apply to machinesBased on the law of conservation of energy, how can we reasonably im
    7·1 answer
  • A stone falls freely from rest for 8.0s what is it final velocity
    15·1 answer
  • How high does Pete lift his sledge hammer if he used a force of 25N to lift the hammer while doing 50J of work?
    9·1 answer
  • Perform the following mathematical operation and report answer to the correct number of significant figures 143.6 divided by 21.
    9·1 answer
  • Two equal, but oppositely charged particles are attracted to each other electrically. The size of the force of attraction is 48.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!