Answer:
Atomic number is the number of protons in the nucleus. The mass number of an atom tells you the total number of protons and neutrons in the nucleus.
Answer:
d. A projectile with a horizontal component of motion will have a constant horizontal velocity.
f. The horizontal velocity of a projectile is unaffected by the vertical velocity; these two components of motion are independent of each other.
g. The horizontal displacement of a projectile is dependent upon the time of flight and the initial horizontal velocity.
h. The final horizontal velocity of a projectile is always equal to the initial horizontal velocity.
Explanation:
When we are dealing with parabolic motion, the x-component of the velocity remains the same (hence, in the case of the horizontal component, the acceleration will always be zero), <u>while the y-component always change because it is affected by the acceleration due gravity that acts verticaly.</u>
On the other hand, the horizontal displacement
of the projectile is mathematically expressed as:
Where:
is the projectile's horizontal component of the initial velocity
is the time the parabolic motion lasts
This means <u>the projectile's horizontal displacement is directly proportional to the horizontal component of the initial velocity and the total time the projectile describes the parabolic motion</u>.
Of course, all of this considerations are assuming this is an ideal parabolic path and there is no air resistance.
Distance is 90km,time 1 hr
distance 2 is 82km,time 5 hrs
average speed=total distance travelled/total time taken.
90+82=172/5+1=6
average speed=28.7km over hour
The final velocity of the projectile when it strikes the ground below is 198.51 m/s.
<h3>
Time of motion of the projectile</h3>
The time taken for the projectile to fall to the ground is calculated as follows;
h = vt + ¹/₂gt²
where;
- h is height of the cliff
- v is velocity
- t is time of motion
265 = (185 x sin45)t + (0.5)(9.8)t²
265 = 130.8t + 4.9t²
4.9t² + 130.8t - 265 = 0
solve the quadratic equation using formula method,
t = 1.89 s
<h3>Final velocity of the projectile</h3>
vyf = vyi + gt
where;
- vyf is the final vertical velocity
- vyi is initial vertical velocity
vyf = (185 x sin45) + (9.8 x 1.89)
vyf = 149.322 m/s
vxf = vxi
where;
- vxf is the final horizontal velocity
- vxi is the initial horizontal velocity
vxf = 185 x cos(45)
vxf = 130.8 m/s
vf = √(vyf² + vxf²)
where;
- vf is the speed of the projectile when it strikes the ground below
vf = √(149.322² + 130.8²)
vf = 198.51 m/s
Learn more about final velocity here: brainly.com/question/6504879
#SPJ1
There it is fella tried on ma own consciousness