The period of the wave is the reciprocal of its frequency.
1 / (5 per second) = 0.2 second .
The wavelength is irrelevant to the period. But since you
gave it to us, we can also calculate the speed of the wave.
Wave speed = (frequency) x (wavelength)
= (5 per second) x (1cm) = 5 cm per second
Answer:


Explanation:
what is the smallest crater that each of these telescopes could resolve on our moon?
For moon ;
s = 3.8 × 10 ⁸ m
y = 1.22 λs/D
where;
λ = 400 nm = 400× 10 ⁻⁹
D = 2.4 m
The smallest crater for the hubble space is calculated as follows:


For Aceribo ;
y = 1.22 λs/D
where :
λ = 75 cm = 0.75 m
D = 305 m


I think is ocean but I'm not sure
Answer:
a-
V= IR
9V = I ×( 12+6)
I = 9/ 18 A = 0.5 A
b
V=IR
240 = 6 A ×( 20 + R)
40 = 20 + R
R = 20 ohm
c
resultant resistance of the 2 parallel resistances= Ro
1/Ro = 1/ 5 + 1/ 20
1/Ro =( 20+5)/100
= 1/Ro = 1/4
Ro= 4 ohm
V=IR
V = 2A × ( 1+ 4 OHM)
V = 10V
d
equivalent resistance = Ro
1/Ro = 1/(2+8) + 1/(5+5)
1/Ro = 1/10 +1/10
2/10 = 1/ Ro
Ro= 10/2 = 5 ohm
V = IR
12V = I × 5Ohm
I=2.4 A
Complete question:
The coordinate of a particle in meters is given by x(t)=1 6t- 3.0t³ , where the time tis in seconds. The
particle is momentarily at rest at t is:
Select one:
a. 9.3s
b. 1.3s
C. 0.75s
d.5.3s
e. 7.3s
Answer:
b. 1.3 s
Explanation:
Given;
position of the particle, x(t)=1 6t- 3.0t³
when the particle is at rest, the velocity is zero.
velocity = dx/dt
dx /dt = 16 - 9t²
16 - 9t² = 0
9t² = 16
t² = 16 /9
t = √(16 / 9)
t = 4/3
t = 1.3 s
Therefore, the particle is momentarily at rest at t = 1.3 s