1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Soloha48 [4]
3 years ago
6

The amount of energy absorbed by the substance and is generated by heat is called____________ energy. Matter or arrangement or t

hermal
Physics
2 answers:
dlinn [17]3 years ago
7 0

Answer:

The amount of energy absorbed by the substance and is generated by heat is called HEAT energy. Matter or arrangement or thermal

kiruha [24]3 years ago
4 0

Answer:

thermal energy

Explanation:

thermal energy is a type of energy taht characterstics energy of a degree in thermal system. It is a energy that is responsible for its tempreature.

You might be interested in
Consider three identical metal spheres, A, B, and C. Sphere A carries a charge of +6q. Sphere B caries a charge of-2q. Sphere C
miskamm [114]
<h2>20. How much charge is on sphere B after A and B touch and are separated?</h2><h3>Answer:</h3>

\boxed{q_{B}=+2q}

<h3>Explanation:</h3>

We'll solve this problem by using the concept of electric potential or simply called potential V, which is <em>the energy per unit charge, </em>so the potential V at any point in an electric field with a test charge q_{0} at that point is:

V=\frac{U}{q_{0}}

The potential V due to a single point charge q is:

V=k\frac{q}{r}

Where k is an electric constant, q is value of point charge and r is  the distance from point charge to  where potential is measured. Since, the three spheres A, B and C are identical, they have the same radius r. Before the sphere A and B touches we have:

V_{A}=k\frac{q_{A}}{r_{A}} \\ \\ V_{B}=k\frac{q_{B}}{r_{A}} \\ \\ But: \\ \\ \ r_{A}=r_{B}=r

When they touches each other the potential is the same, so:

V_{A}= V_{B} \\ \\ k\frac{q_{A}}{r}=k\frac{q_{B}}{r} \\ \\ \boxed{q_{A}=q_{B}}

From the principle of conservation of charge <em>the algebraic sum of all the electric charges in any closed system is constant. </em>So:

q_{A}+q_{B}=q \\ \\ q_{A}=+6q \ and \ q_{B}=-2q \\ \\ So: \\ \\ \boxed{q_{A}+q_{B}=+4q}

Therefore:

(1) \ q_{A}=q_{B} \\ \\ (2) \ q_{A}+q_{B}=+4q \\ \\ (1) \ into \ (2): \\ \\ q_{A}+q_{A}=+4q \therefore 2q_{A}=+4q \therefore \boxed{q_{A}=q_{B}=+2q}

So after A and B touch and are separated the charge on sphere B is:

\boxed{q_{B}=+2q}

<h2>21. How much charge ends up on sphere C?</h2><h3>Answer:</h3>

\boxed{q_{C}=+1.5q}

<h3>Explanation:</h3>

First: A and B touches and are separated, so the charges are:

q_{A}=q_{B}=+2q

Second:  C is then touched to sphere A and separated from it.

Third: C is to sphere B and separated from it

So we need to calculate the charge that ends up on sphere C at the third step, so we also need to calculate step second. Therefore, from the second step:

Here q_{A}=+2q and C carries no net charge or q_{C}=0. Also, r_{A}=r_{C}=r

V_{A}=k\frac{q_{A}}{r} \\ \\ V_{C}=k\frac{q_{C}}{r}

Applying the same concept as the previous problem when sphere touches we have:

k\frac{q_{A}}{r} =k\frac{q_{C}}{r} \\ \\ q_{A}=q_{C}

For the principle of conservation of charge:

q_{A}+q_{C}=+2q \\ \\ q_{A}=q_{C}=+q

Finally, from the third step:

Here q_{B}=+2q \ and \ q_{C}=+q. Also, r_{B}=r_{C}=r

V_{B}=k\frac{q_{B}}{r} \\ \\ V_{C}=k\frac{q_{C}}{r}

When sphere touches we have:

k\frac{q_{B}}{r} =k\frac{q_{C}}{r} \\ \\ q_{B}=q_{C}

For the principle of conservation of charge:

q_{B}+q_{C}=+3q \\ \\ q_{A}=q_{C}=+1.5q

So the charge that ends up on sphere C is:

q_{C}=+1.5q

<h2>22. What is the total charge on the three spheres before they are allowed to touch each other.</h2><h3>Answer:</h3>

+4q

<h3>Explanation:</h3>

Before they are allowed to touch each other we have that:

q_{A}=+6q \\ \\ q_{B}=-2q \\ \\ q_{C}=0

Therefore, for the principle of conservation of charge <em>the algebraic sum of all the electric charges in any closed system is constant, </em>then this can be expressed as:

q_{A}+q_{B}+q_{C}=+6q -2q +0 \\ \\ \therefore q_{A}+q_{B}+q_{C}=+4q

Lastly, the total charge on the three spheres before they are allowed to touch each other is:

+4q

8 0
3 years ago
Select the option that best summarizes the reason for the use of position-time graphs when studying physical science. (1 point)
Sedaia [141]

The position-time graphs show the relationship between the position of an object (shown on the y-axis) and the time (shown on the x-axis) to show velocity.

<h3>What is velocity?</h3>

Velocity is a vector quantity that tells the distance an object has traveled over a period of time.

Displacement is a vector quality showing total length of an area traveled by a particular object.

Imagine a time-position graph where the velocity of an object is constant. What will be observed on the graph concerning the slope of the line segment as well as the velocity of the object?

The slope of the line is equal to zero and the object will be stationary.

The position-time graphs show the relationship between the position of an object (shown on the y-axis) and the time (shown on the x-axis) to show velocity.

To learn more about velocity refer to the link

brainly.com/question/18084516  

#SPJ2

4 0
11 months ago
Read 2 more answers
A fishbowl has a circular opening with a diameter of 13 cm. The fishbowl sits upright on a table in a magnetic field of 0.00110
azamat

Answer:

Did you ever get the answer?

Explanation:

5 0
3 years ago
Need help quick!!!!
BARSIC [14]
The answer is B. Unbalanced force
3 0
2 years ago
Read 2 more answers
A train travels 8.81 m/s in a -51.0° direction.
Amiraneli [1.4K]

The displacement of the train after 2.23 seconds is 25.4 m.

<h3>Resultant velocity of the train</h3>

The resultant velocity of the train is calculated as follows;

R² = vi² + vf² - 2vivf cos(θ)

where;

  • θ is the angle between the velocity = (90 - 51) + 37 = 76⁰

R² = 8.81² + 9.66² - 2(8.81 x 9.66) cos(76)

R² = 129.75

R = √129.75

R = 11.39 m/s

<h3>Displacement of the train</h3>

Δx = vt

Δx = 11.39 m/s x 2.23 s

Δx = 25.4 m

Thus, the displacement of the train after 2.23 seconds is 25.4 m.

Learn more about displacement here: brainly.com/question/2109763

#SPJ1

8 0
1 year ago
Other questions:
  • What properties of sound determine the volume of sound?
    10·1 answer
  • Pam has a mass of 42.4 kg and she is at rest on smooth, level, frictionless ice. Pam straps on a rocket pack. The rocket supplie
    15·1 answer
  • What is gravity? I need help.
    14·2 answers
  • is plugged into the outlet of a 120−V circuit that has a 20−A circuit breaker. You plug an electric hair dryer into the same out
    10·1 answer
  • "The smallest insects that a bat can detect are approximately the size of one wavelength of the sound the bat makes. What is the
    5·1 answer
  • Any help would be great! Thank you x<br><br><br> Giving brainliest answer xoxo
    5·1 answer
  • Can someone define 'work' for me please? I looked it up but there are a lot of different answers. The physics type, not a job :)
    15·1 answer
  • What type of chemical reaction is shown here? *
    13·1 answer
  • Three cars (car F, car G, and car H) are moving with the same velocity when the driver suddenly slams on the brakes, locking the
    11·1 answer
  • How do I calculate the tension in the horizontal string?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!