Answer:
Explanation:
the forces between the molecules are stronger in solid than in liquids
Answer: The energy (heat) required to convert 52.0 g of ice at –10.0°C to steam at 100°C is 157.8 kJ
Explanation:
Using this formular, q = [mCpΔT] and = [nΔHfusion]
The energy that is needed in the different physical changes is thus:
The heat needed to raise the ice temperature from -10.0°C to 0°C is given as as:
q = [mCpΔT]
q = 52.0 x 2.09 x 10
q = 1.09 kJ
While from 0°C to 100°C is calculated as:
q = [mCpΔT]
q = 52.0 x 4.18 x 100
q = 21.74 kJ
And for fusion at 0°C is called Heat of fusion and would be given as:
q = n ΔHfusion
q = 52.0 / 18.02 x 6.02
q = 17.38 kJ
And that required for vaporization at 100°C is called Heat of vaporization and it's given as:
q = n ΔHvaporization
q = 52.0 / 18.02 x 40.7
q = 117.45 kJ
Add up all the energy gives 157.8 kJ
95.6 cal
are needed.
Explanation:
Use the following equation:
q
=
m
c
Δ
T
,
where:
q
is heat energy,
m
is mass,
c
is specific heat capacity, and
Δ
T
is the change in temperature.
Δ
T
=
T
final
−
T
initial
Known
m
=
125 g
c
Pb
=
0.130
J
g
⋅
∘
C
T
initial
=
17.5
∘
C
T
final
=
42.1
∘
C
Δ
T
=
42.1
∘
C
−
17.5
∘
C
=
24.6
∘
C
Unknown
q
Solution
Plug the known values into the equation and solve.
q
=
(
125
g
)
×
(
0.130
J
g
⋅
∘
C
)
×
(
24.6
∘
C
)
=
400. J
(rounded to three significant figures)
Convert Joules to calories
1 J
=
0.2389 cal
to four significant figures.
400
.
J
×
0.2389
cal
1
J
=
95.6 cal
(rounded to three significant figures)
95.6 cal
are needed.
Answer:
If the colors in a chromatography are able to dissolve and travel up a paper wick, what kind of chemical property do the colors have when mixed with rubbing alcohol?
(You may need to search "Chemical Properties")
Answer:
Every single living thing are comprised of cells. Cells are the fundamental units of structure and capacity in living things. New cells are delivered from existing cells.