Answer:
This is to optimize storage and transport.
Explanation:
True, the path of the ball, as observed from the train window, will be a horizontal straight line.
An object projected from a certain height has a parabolic path when observed from a fixed point.
However, if the reference point is moving at the same velocity as the object, the path of the object's motion appears to be a straight line.
When the ball is released from the window of the train, it will move at the same constant velocity as the train, and the path of the ball's motion observed from the train window will be a straight line.
Thus, we can conclude that the given statement is true. The path of the ball, as observed from the train window, will be a horizontal straight line.
Learn more about path of motion of objects here: brainly.com/question/82610
363 m/s is the speed of sound through the air in the pipe.
Answer: Option B
<u>Explanation:</u>
The formula used to calculate the wavelength given as below,

--------> eq. 1
In power system, harmonics define by positive integers of the fundamental frequency. So the third order harmonic is a multiple of the third fundamental frequency. Each harmonic creates an additional node and an opposite node, as well as an additional half wave within the string.
If the number of waves in the circuit is known, the comparison between standing wavelength and circuit length can be calculated algebraically. The general expression for this given as,

For first harmonic, n =1

For second harmonic, n =2

For third harmonic, n =3

-------> eq. 2
Here given f = 939 Hz, L = 0.58 m...And, substitute eq 2 in eq 1 and values, we get
