Imagine a skinny straw in the water, standing right over the hole. The WEIGHT of the water in that straw is the force on the tape. Now, the volume of water in the straw is (1 mm^2) times (20 cm). Once you have the volume, you can use the density and gravity to find the weight. And THAT's the force on the tape. If the tape can't hold that force, then it peels off and the water runs out through the hole. /// This is a pretty hard problem, because it involved mm^2, cm, and m^3. You have to be very very very careful with your units as you work through this one. If you've been struggling with it, I'm almost sure the problem is the units.
Answer:
38
Explanation:
because the law of reflection states angle of incidence is equal to the angle of reflection
Answer:
The volume of water evaporated is 199mL
Explanation:
Concentration is calculated with the following formula

where n is the number of moles of solute and V is the volume of the solution (in this case is the same as the solvent volume) in liters.
So we isolate the variable n to know the amount of moles, using the volume given in liters


Now, we isolate the variable V to know the new volume with the new concentration given.

Finally, the volume of water evaporated is the difference between initial and final volume.

I like your profile picture:)
Answer:
The skater 1 and skater 2 have a final speed of 2.02m/s and 2.63m/s respectively.
Explanation:
To solve the problem it is necessary to go back to the theory of conservation of momentum, specifically in relation to the collision of bodies. In this case both have different addresses, consideration that will be understood later.
By definition it is known that the conservation of the moment is given by:

Our values are given by,

As the skater 1 run in x direction, there is not component in Y direction. Then,
Skate 1:


Skate 2:


Then, if we applying the formula in X direction:
m_1v_{x1}+m_2v_{x2}=(m_1+m_2)v_{fx}
75*5.45-75*1.41=(75+75)v_{fx}
Re-arrange and solving for v_{fx}
v_{fx}=\frac{4.04}{2}
v_{fx}=2.02m/s
Now applying the formula in Y direction:




Therefore the skater 1 and skater 2 have a final speed of 2.02m/s and 2.63m/s respectively.