The time interval that is between the first two instants when the element has a position of 0.175 is 0.0683.
<h3>How to solve for the time interval</h3>
We have y = 0.175
y(x, t) = 0.350 sin (1.25x + 99.6t) = 0.175
sin (1.25x + 99.6t) = 0.175
sin (1.25x + 99.6t) = 0.5
99.62 = pi/6
t1 = 5.257 x 10⁻³
99.6t = pi/6 + 2pi
= 0.0683
The time interval that is between the first two instants when the element has a position of 0.175 is 0.0683.
b. we have k = 1.25, w = 99.6t
v = w/k
99.6/1.25 = 79.68
s = vt
= 79.68 * 0.0683
= 5.02
Read more on waves here
brainly.com/question/25699025
#SPJ4
complete question
A transverse wave on a string is described by the wave function y(x, t) = 0.350 sin (1.25x + 99.6t) where x and y are in meters and t is in seconds. Consider the element of the string at x=0. (a) What is the time interval between the first two instants when this element has a position of y= 0.175 m? (b) What distance does the wave travel during the time interval found in part (a)?
Your answer is electricity, light and magnetism. They can be determined usinf elecromagnetic radioation.
<span>
Even the energy can't be detected by our eyes, there are a lot of measurement instruments that can measure infrared (IR), gamma rays, radio or X-rays or ultraviolet (UV)</span>
Answer:
Explanation:
Let say the empty wagon has mass "M"
now by newton's II Law we will have
now it is given that empty wagon is pulled with acceleration 1.4 m/s/s
now we will have
now a child of mass three times the mass of wagon is sitting on the empty wagon
so here we have
so we have
Scalar Quantity :-
→ These are the quantities with magnitude only . These quantities doesn't have to be mentioned with direction
eg.)=> Mass , Temprature .
Vector Quantity :-
→ These quantities are described with both Magnitude and Direction . These quantities follow special type of algebra called Vector algebra .
eg.)=> Force , Displacement
_______________________________
Hope It Helps You. ☺
The temperature decreases as you go up.