Answer:
The temperature is 2541.799 K
Explanation:
The formula for black body radiation is given by the relation;
Q = eσAT⁴
Where:
Q = Rate of heat transfer 56.6
σ = Stefan-Boltzman constant = 5.67 × 10⁻⁸ W/(m²·k⁴)
A = Surface area of the cube = 6×(3.72 mm)² = 8.3 × 10⁻⁵ m²
e = emissivity = 0.288
T = Temperature
Therefore, we have;
T⁴ = Q/(e×σ×A) = 56.6/(5.67 × 10⁻⁸ × 8.3 × 10⁻⁵ × 0.288) = 4.174 × 10¹⁴ K⁴
T = 2541.799 K
The temperature = 2541.799 K.
If he keeps that pace he will be at the 34 yard line
Answer:
The speed of waves on this wire is 329.14 m/s
Explanation:
Given;
tension of the wire, T = 650 N
mass per unit length, μ = 0.06 g /cm = 0.006 kg/m
(convert the unit of mass per length in g/cm to kg/m by dividing by 10 = 0.06 / 10 = 0.006 kg/m)
The speed of waves on this wire is given as;
Therefore, the speed of waves on this wire is 329.14 m/s
Power grid
All the poles and wires you see along the highway and in front of your house are called the electrical transmission and distribution system. Today, generating stations all across the country are connected to each other through the electrical system (sometimes called the "power grid").
The one tossed upward on the Moon will rise to a greater maximum height before starting to fall.
It'll also spend more total time in flight before returning to the hand that tossed it. (I almost said that it'll spend "more time in the air". That would be silly on the Moon.)