Answer:
Solution:
we have given the equation of motion is x(t)=8sint [where t in seconds and x in centimeter]
Position, velocity and acceleration are all based on the equation of motion.
The equation represents the position. The first derivative gives the velocity and the 2nd derivative gives the acceleration.
x(t)=8sint
x'(t)=8cost
x"(t)=-8sint
now at time t=2pi/3,
position, x(t)=8sin(2pi/3)=4*squart(3)cm.
velocity, x'(t)=8cos(2pi/3)==4cm/s
acceleration, x"(t)==8sin(2pi/3)=-4cm/s^2
so at present the direction is in y-axis.
Answer:
37.42 m/s
Explanation:
We know that apparent frequency,
is given by
where f is the given frequency in this case 392, V is the speed of sound in air which is given as 343 and
is the speed of car which is unknown, \bar f is given as 440 Hz

Given:
mass is 3.1 kilograms
The acceleration due to gravity
is 9.8m/s2
Required:
Weight
Solution:
W = mg
W = (3.1 kilograms)( 9.8m/s2)
W = 30.38 Newtons
Wavelength = (speed) / (frequency)
Wavelength = (340 m/s) / (400 /s)
<em>Wavelength = 0.85 meter</em>
When the force of air resistance on the skydiver
is equal to the skydiver's weight.