Answer:
Tension= 21,900N
Components of Normal force
Fnx= 17900N
Fny= 22700N
FN= 28900N
Explanation:
Tension in the cable is calculated by:
Etorque= -FBcostheta(1/2L)+FT(3/4L)-FWcostheta(L)= I&=0 static equilibrium
FTorque(3/4L)= FBcostheta(1/2L)+ FWcostheta(L)
Ftorque=(Fcostheta(1/2L)+FWcosL)/(3/4L)
Ftorque= 2/3FBcostheta+ 4/3FWcostheta
Ftorque=2/3(1350)(9.81)cos55° + 2/3(2250)(9.81)cos 55°
Ftorque= 21900N
b) components of Normal force
Efx=FNx-FTcos(90-theta)=0 static equilibrium
Fnx=21900cos(90-55)=17900N
Fy=FNy+ FTsin(90-theta)-FB-FW=0
FNy= -FTsin(90-55)+FB+FW
FNy= -21900sin(35)+(1350+2250)×9.81=22700N
The Normal force
FN=sqrt(17900^2+22700^2)
FN= 28.900N
Answer:
Explanation:
We know that Impulse = force x time
impulse = change in momentum
change in momentum = force x time
Force F = .285 t -.46t²
Since force is variable
change in momentum = ∫ F dt where F is force
= ∫ .285ti - .46t²j dt
= .285 t² / 2i - .46 t³ / 3 j
When t = 1.9
change in momentum = .285 x 1.9² /2 i - .46 x 1.9³ / 3 j
= .514i - 1.05 j
final momentum
= - 3.1 i + 3.9j +.514i - 1.05j
= - 2.586 i + 2.85j
x component = - 2.586
y component = 2.85
Answer: hello some part of your question is missing attached below is the missing detail
answer :
<em>w</em>f = M( v cos∅ )D / I
Explanation:
The Angular speed <em>wf </em>of the system after collision in terms of the system parameters and I can be expressed as
considering angular momentum conservation
Li = Lf
M( v cos∅ ) D = ( ML^2 / 3 + mD^2 ) <em>w</em>f
where ; ( ML^2 / 3 + mD^2 ) = I ( Inertia )
In terms of system parameters and I
<em>w</em>f = M( v cos∅ )D / I
1 newton / square metre =0.0001 newton / square centimetre
Formula = divide the pressure value by 10000
Answer:
Engular velocity: 
Linear velocity: 
The time it takes:

Explanation:
The magnitude of the centripetal acceleration can be related to the angular velocity and radius as:
(1)
Solving for w:
(2)
Replacing a=9,8m/s2 and r=6,375,000m:
(3)
And the angular velocity relates to the linear velocity:

The perimeter of the orbit is:

The time it takes:
