1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anestetic [448]
3 years ago
10

How long will it take a 2190 W motor to lift a 1.47 x 104 g box, 6.34 x 104 mm vertically.​

Physics
1 answer:
Rasek [7]3 years ago
6 0

Answer:

t = 4.17 [s]

Explanation:

We know that work is defined as the product of force by distance.

W = F*d

where:

F = force [N] (units of Newtons)

d = distance = 6.34 x 10⁴ [mm] = 63.4 [m]

In order to find the force, we must determine the weight of the box, the weight can be determined by means of the product of mass by gravitational acceleration.

w = m*g

where:

m = mass = 1.47 x 10⁴ [g] = 14.7 [kg]

g = gravity acceleration = 9.81 [m/s²]

w = 14.7*9.81

w = 144.2 [N]

Therefore the work can be calculated.

W = w*d

W = 144.2*63.4

W = 9142.72 [J] (units of Joules)

Power is now defined in physics as the relationship of work at a given time

P = W/t

where:

P = power = 2190 [W]

t = time [s]

Now clearing t, we have.

t = W/P

t = 9142.72/2190

t = 4.17 [s]

You might be interested in
What role does induction play when lightning strikes earth?
Dominik [7]
The role lightning plays in earth is when the earth is charged with positive protons, the lightning is the electron.
7 0
3 years ago
Giving brainly, please help
brilliants [131]

Answer:

when the mug is heated thus its temperature rises increasing the kinetic energy of the molecules , the oscillations around the rest position in the mug(solid) increases which increase the spaces between molecules and the mug expands. what cause the cracking is that outside of the mug expands before the inside and the mug cracks

3 0
3 years ago
a goalkeeper catches a 491 g soccer ball traveling horizontally at 29.4 m/s. if it took 2,218 n of force to stop the ball, how m
yarga [219]

The ball will take 2.551 seconds to reach its peak position.

<h3>How much time will the ball take to land?</h3>

We must know how long the balls are in the air before we can predict where they will fall. It will take 2 seconds for both balls to touch the ground.

<h3>How quickly does a ball drop?</h3>

The falling ball travels a distance of d = 12 9.8 (m/s2) t2, with a speed of v = 9.8 (m/s2) t as a function of time. The ball travels 4.9 m in a second. The falling ball's velocity is v = -9.8 (m/s2) t j, and its position is r = (4.9 m - 12 9.8 (m/s2) t2) j as a function of time.

To know more about balls visit:-

brainly.com/question/19930452

#SPJ4

6 0
1 year ago
List 3 different sciences involved in environmental science
Lera25 [3.4K]
Biology, physics, geology
8 0
3 years ago
Read 2 more answers
A high-jumper, having just cleared the bar, lands on an air mattress and comes to rest. Had she landed directly on the hard grou
Hoochie [10]

Answer:

e. the air mattress exerts the same impulse, but a smaller net avg force, on the high-jumper than hard-ground.

Explanation:

This is according to the Newton's second law and energy conservation that the force exerted by the hard-ground is more than the force exerted by the mattress.

The hard ground stops the moving mass by its sudden reaction in the opposite direction of impact force whereas the mattress takes a longer time to stop the motion of same mass in a longer time leading to lesser average reaction force.

<u>Mathematical expression for the Newton's second law of motion is given as:</u>

F=\frac{dp}{dt} ............................................(1)

where:

dp = change in momentum

dt = time taken to change the momentum

We know, momentum:

p=m.v

Now, equation (1) becomes:

F=\frac{d(m.v)}{dt}

<em>∵mass is constant at speeds v << c (speed of light)</em>

\therefore F=m.\frac{dv}{dt}

and, \frac{dv}{dt} =a

where: a = acceleration

\Rightarrow F=m.a

also

F\propto \frac{1}{dt}

so, more the time, lesser the force.

<em>& </em><u><em>Impulse:</em></u>

I=F.dt

I=m.a.dt

I=m.\frac{dv}{dt}.dt

I=m.dv=dp

∵Initial velocity and final velocity(=0), of a certain mass is same irrespective of the stopping method.

So, the impulse in both the cases will be same.

4 0
3 years ago
Other questions:
  • If we're interested in knowing the rate at which light energy is recieved by a unit of area on a particular surface, we're reall
    15·2 answers
  • while playing her guitar , karen plucks one string with increasin levels of force. what effect does this have on the sound produ
    6·1 answer
  • Why are renewable energy resources going to be important in our future
    9·1 answer
  • Describe what happens to the electric field lines when two objects with unlike charges are brought near each other.
    5·2 answers
  • A car of mass 1230 kg is on an icy driveway inclined at an angle of 39°. The acceleration of gravity is 9.8 m/s². θ If the incli
    5·1 answer
  • Action and reaction forces will cancel because they are pushing on the same object toward each other. True or False
    8·2 answers
  • If humans cannot see ultraviolet waves how can ultraviolet light be used to gather evidence of a crime
    10·2 answers
  • Identify and define Four causes of infections diseases
    13·1 answer
  • An atom with more or less neutrons than expected is a what ?
    6·1 answer
  • Meet join if yip want to <br><br>Code is; axe-euvr-wey<br><br>Pls don’t flag
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!