Answer:
An old clock that has a swinging pendulum
Explanation:
Answer:
The block has an acceleration of 
Explanation:
By means of Newton's second law it can be determine the acceleration of the block.
(1)
Where
represents the net force, m is the mass and a is the acceleration.
(2)
The forces present in x are
and
(the friction force):

Notice that
subtracts to
since it is at the opposite direction.

The forces present in y balance each other:

Therefore:
(3)
But
and writing (3) in terms of a it is get:

So the block has an acceleration of
.
Answer: To answer this question, we will need the following equation: SPEED = DISTANCE/TIME (A multiplication and division triangle will be shown)i) The speed of the car is calculated by doing 100 metres/ 20 seconds which gives us 5 metres per second. ii) Rearranging the equation earlier, we can make the distance the subject of the equation so that we get SPEED x TIME = DISTANCE. We worked out the speed and the time was given as 1 minute 40 seconds but we cannot plug in the numbers yet as the time has to be converted to units of seconds (because our speed is in meters per second). 1 minute 40 seconds = 60 seconds + 40 seconds = 100 secondsWe then plug in the numbers to get the distance travelled = 5 metres per second x 100 seconds = 500 metres.
Explanation:
Answer:
Explanation:
parallel capacitances add directly
Series capacitances add by reciprocal of sum of reciprocals.
Ceq = [ C ] + [1 / (1/C + 1/C)] + [1 / (1/C + 1/C + 1/C)]
Ceq = [ C ] + [C / 2] + [C / 3]
Ceq = [ 6C/6 ] + [3C / 6] + [2C / 6]
Ceq = 11C/6