we kfwj jdhahahaahahahahahahhahahahahahahahaahahhahahahahahahahahahahahaahah
Answer:
0.01
Explanation:
Given the data:
10.1,9.87, 9.76, 9.91, 9.75, 9.88, 9.69, 9.83, 9.90
True value = 9.81
Mean value :
Σx / n
Sample size, n = 9
(10.1 + 9.87 + 9.76 + 9.91 + 9.75 + 9.88 + 9.69 + 9.83 + 9.90) / 9
= 88.69 / 9
= 9.854
Standard deviation (σ) :
Sqrt (Σ(X - m)² / n)
[(10.1 - 9.854)^2 + (9.87 - 9.854)^2 + (9.76 - 9.854)^2 + (9.91 - 9.854)^2 + (9.75 - 9.854)^2 + (9.88 - 9.854)^2 + (9.69 - 9.854)^2 + (9.83 - 9.854)^2 + (9.90 - 9.854)^2] / 9
Sqrt(0.113824 / 9)
Sqrt(0.0126471)
σ = 0.1124593
Standard Error = σ / sqrt(n)
Standard Error = 0.1124593 / 9
Standard Error = 0.0124954
Standard Error = 0.01 ( 1 significant digit)
Answer:
Line 1: the spacing is even the whole time
Line 2: the spacing increases over time
Line 3: the spacing decreases over time
hope this helps!
Answer:
The net force acting on the bobsled is 300 N.
Explanation:
Given:
Mass of the bobsled is, 
Displacement is, 
Initial speed is,
m/s
Final speed is,
m/s
Net acceleration acting on the bobsled can be determined using the following Newton's equation of motion:

Plug in all the given values and solve for acceleration,
.

Now, as per Newton's second law, net force is the product of mass and acceleration. So,

Therefore, the net force acting on the bobsled is 300 N.
At terminal velocity, drag force becomes equal to weight. Therefore:
weight = bv²
0.0023 x 9.81 = b x 9.1²
b = 2.72 x 10⁻⁴