Answer: 1090°C
Explanation: According to combined gas laws
(P1 × V1) ÷ T1 = (P2 × V2) ÷ T2
where P1 = initial pressure of gas = 80.0 kPa
V1 = initial volume of gas = 10.0 L
T1 = initial temperature of gas = 240 °C = (240 + 273) K = 513 K
P2 = final pressure of gas = 107 kPa
V2 = final volume of gas = 20.0 L
T2 = final temperature of gas
Substituting the values,
(80.0 kPa × 10.0 L) ÷ (513 K) = (107 kPa × 20.0 L) ÷ T2
T2 = 513 K × (107 kPa ÷80.0 kPa) × (20.0 L ÷ 10.0 L)
T2 = 513 K × (1.3375) × (2)
T2 = 1372.275 K
T2 = (1372.275 - 273) °C
T2 = 1099 °C
This is covalent network type of solid.
For example, silicon dioxide (SiO₂) is covalent network solid with covalent bonding.
Covalent network solid is a chemical compound (or element) in which the atoms are bonded by covalent bonds in a continuous network extending throughout the material.
Silicon(IV) oxide has continuous three-dimensional network of SiO₂ units and diamond has sp3 hybridization.
This solids do not have free electrons so they are good insulators.
They have strong covalent bonds, so they melt at extremely high temperature.
Other examples are quartz, diamond, and silicon carbide.
More about network solid: brainly.com/question/15548648
#SPJ4
A i dolnt reaally know but yeh
Answer:
Mass = 88.12 g
Explanation:
Given data:
Mass of iron oxide = 126 g
Mass of iron formed = ?
Solution:
Chemical equation:
Fe₂O₃ + 3CO → 2Fe + 3CO₂
Number of moles of iron oxide:
Number of moles = mass/molar mass
Number of moles = 126 g/ 159.69 g/mol
Number of moles = 0.789 mol
Now we will compare the moles of iron with iron oxide.
Fe₂O₃ : Fe
1 : 2
0.789 : 2/1×0.789 = 1.578 mol
Mass of iron:
Mass = number of moles ×molar mass
Mass = 1.578 mol × 55.84 g/mol
Mass = 88.12 g
NO, why though this is a simple question lol!