1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
UNO [17]
4 years ago
5

A woman (mass= 50.5 kg) jumps off of the ground, and comes back down to the ground at a velocity of -8.4 m/s.

Physics
1 answer:
Blizzard [7]4 years ago
3 0

Answer:

Approximately 1.6\times 10^{3}\; \rm N.

Explanation:

By the Impulse-Momentum Theorem, the change in this woman's momentum  will be equal to the impulse that is applied to her.

The momentum p of an object is equal to the product of its mass m and velocity v. That is: p = m \cdot v.

Let v(\text{before}) and v(\text{after}) represent the velocity of the woman before and after the landing. Let m represent the woman's mass.

  • The woman's momentum before the landing would be m \cdot v(\text{before}).
  • The woman's momentum after the landing would be m \cdot v(\text{after}).

Therefore, the change in this woman's momentum would be:

\begin{aligned}& \Delta p \\ & = p(\text{after}) - p(\text{before}) \\ &= m \cdot (v(\text{after})- v(\text{before}))\end{aligned}.

On the other hand, impulse is equal to force multiplied by the duration of the force. Let F represent the average force on the woman. The impulse on her during the landing would be F \cdot t.

Apply the Impulse-Momentum Theorem.

  • Impulse: F\cdot t.
  • Change in momentum: m \cdot (v(\text{after})- v(\text{before})).

Impulse is equal to the change in momentum:

F \cdot t = m \cdot (v(\text{after})- v(\text{before})).

After landing, the woman comes to a stop. Her velocity would become zero. Therefore, v(\text{after}) = 0\; \rm m \cdot s^{-1}.

\begin{aligned}F &= \displaystyle \frac{m \cdot (v(\text{after})- v(\text{before}))}{t} \\ &= \frac{50.5\; \text{kg} \times \left(0 \; \mathrm{m \cdot s^{-1}}- 8.4\; \mathrm{m \cdot s^{-1}}\right)}{0.27\; \rm s} \\ &\approx 1.6 \times 10^{3}\; \rm N\end{aligned}.

You might be interested in
Suppose you were digging a well into saturated sediments. Why is the sediment’s permeability an important factor in deciding whe
zloy xaker [14]

Answer:

The importance of the sediments permeability is that if it is permeable, water will flow easily through the sediment and thereby produce a very good supply of water for the well.

Explanation:

When digging a well into saturated sediments, the possibility of the sediment with either little saturation or full saturation being able to provide steady water supply will be limited by how permeable it is. Now, the importance of the sediments permeability is that if it is permeable, water will flow easily through the sediment and thereby produce a very good supply of water for the well.

4 0
3 years ago
Which statement best describes air pressure at high altitudes? (Points : 3)
WARRIOR [948]
Air pressure decreases as altitude increases. this is because air pressure is caused by the gravity of earth, the gravity pulls on the air, compacting it and making a pressure.
But as we go higher, gravity decreases, causing less pull on the air resulting in less air pressure.<span />
5 0
4 years ago
Read 2 more answers
Astronaut X of mass 50kg floats next to Astronaut Y of mass 100kg while in space, as shown in the figure. The positive direction
jonny [76]

Answer:

C

Explanation:

The change in momentum of x has to be the opposite of the change in momentum of Y because the momentum is just transferred from one to another. But I'm still trying to figure it out how to calculate.

5 0
3 years ago
Destinations humans have traveled in space
raketka [301]
Yes humans have traveled in space before
8 0
3 years ago
The width of the central maxima, formed from light of wavelength 575 nm behind a single slit that has a width of 115 μm, is 1.15
Lady bird [3.3K]

Answer:

 L  = 1.15 m

Explanation:

The diffraction phenomenon is described by the equation

        a sin θ = m λ

Where a is the width of the slit, λ  the wavelength and m is an integer, the order of diffraction is left.

The diffraction measurements are made on a screen that is far from the slit, and the angles in the experiment are very small, let's use trigonometry

          tan θ = y / L

          tan θ = sint θ / cos θ≈ sin θ

We substitute in the first equation

           a (y / L) = m λ

The first maximum occurs for m = 1

The distance is measured from the center point of maximum, which coincides with the center of the slit, in this case the distance is the total width of the central maximum, so the distance (y) measured from the center is

         y = 1.15 / 2 = 0.575 cm

         y = 0.575 10⁻² m

Let's clear the distance to the screen (L)

       L = a y / λ  

Let's calculate

     L = 115 10⁻⁶  0.575 10⁻² / 575 10⁻⁹

     L  = 1.15 m

3 0
3 years ago
Other questions:
  • Neglecting air resistance, when does a struck baseball accelerate downward at a rate of 9.8 m/s2?
    14·2 answers
  • What is true about the inertia of two cars, Car A of mass 1,500 kilograms and Car B of mass 2,000 kilograms
    11·2 answers
  • Which single force acts on an object in freefall?
    15·2 answers
  • What is the speed of a wave that has a frequency of 45 Hz and a wavelength of 0.1 meters?
    14·2 answers
  • What should you do if...
    14·1 answer
  • A rock is thrown horizontally from a building at 15 m/s. It hits the ground 45 m from the base of the building. How high was the
    9·1 answer
  • Does Anybody Know The Answers?
    7·1 answer
  • A 250-kg moose stands in the middle of the railroad tracks in Sweden, frozen by the lights of an oncoming 10,000kg train traveli
    11·1 answer
  • Determine the current in the 7-ohm resistor for the circuit shown in the figure. Assume that the batteries are ideal and that al
    15·1 answer
  • Determine
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!