Answer:
They dissolve easily in the body’s fluids
Hi!
All rocks are connected in a cycle of creation, change, and destruction called the Rock Cycle. The rock cycle begins with molten rock (magma below ground, lava above ground), which cools and hardens to form igneous rock.
Hope this helps!
~CoCo
Answer:
Explanation:
When Ammonium Chloride is heated at high temperature, it sublimes and gives rise to white colored dense fumes. ... But, Sodium Chloride does not give rise to any white colored fumes upon heating.
Answer:
Explanation:
Hydrogen bonding:-
Hydrogen bonding is a special type of the dipole-dipole interaction and it occurs between hydrogen atom that is bonded to highly electronegative atom which is either fluorine, oxygen or nitrogen atom.
Partially positive end of the hydrogen atom is attracted to partially negative end of these atoms which is present in another molecule. It is strong force of attraction between the molecules.
Thus, hydrogen must be linked to electronegative atom which is oxygen, fluorine and nitrogen which is in and thus, it will shown hydrogen bonding.
Answer:
C(graphite) → C(diamond), ΔH = - 0.45 kcal
CH4 + 2O2 → CO2 + 2H2O + 212,800 cal
Explanation:
C(graphite) → C(diamond), ΔH = - 0.45 kcal
CH4 + 2O2 → CO2 + 2H2O + 212,800 cal
These reactions are exothermic reaction because heat is evolved.
The energy changes occur during the bonds formation and bonds breaking.
There are two types of reaction endothermic and exothermic reaction.
Endothermic reactions:
The type of reactions in which energy is absorbed are called endothermic reactions.
In this type of reaction energy needed to break the bond are higher than the energy released during bond formation.
For example:
C + H₂O → CO + H₂
ΔH = +131 kj/mol
it can be written as,
C + H₂O + 131 kj/mol → CO + H₂
Exothermic reaction:
The type of reactions in which energy is released are called exothermic reactions.
In this type of reaction energy needed to break the bonds are less than the energy released during the bond formation.
For example:
Chemical equation:
C + O₂ → CO₂
ΔH = -393 Kj/mol
it can be written as,
C + O₂ → CO₂ + 393 Kj/mol