Momentums equation is just p=mv
mass times velocity so 50x200
p=10,000
Answer:
Explanation:
The concept of electric field, force acting on proton is applied and appropriate derivations were made to calculate the distance from the surface as shown in the attached file.
I believe the answer would be polygenic. The word translates to "multiple genes". This occurs when many genes make up one specific thing such as our hair color or eye color.
Answer:
Buffers
Explanation:
A buffer solution is a solution containing weak acids and their salts or weak bases and their salts.
A buffer solution is an equilibrium system that resists changes in pH or pOH when a small amount of an acid or base is added hence it is a solution of fairly constant pH value.
Answer:
823.46 kgm/s
Explanation:
At 9 m above the water before he jumps, Henri LaMothe has a potential energy change, mgh which equals his kinetic energy 1/2mv² just as he reaches the surface of the water.
So, mgh = 1/2mv²
From here, his velocity just as he reaches the surface of the water is
v = √2gh
h = 9 m and g = 9.8 m/s²
v = √(2 × 9 × 9.8) m/s
v = √176.4 m/s
v₁ = 13.28 m/s
So his velocity just as he reaches the surface of the water is 13.28 m/s.
Now he dives into 32 cm = 0.32 m of water and stops so his final velocity v₂ = 0.
So, if we take the upward direction as positive, his initial momentum at the surface of the water is p₁ = -mv₁. His final momentum is p₂ = mv₂.
His momentum change or impulse, J = p₂ - p₁ = mv₂ - (-mv₁) = mv₂ + mv₁. Since m = Henri LaMothe's mass = 62 kg,
J = (62 × 0 + 62 × 13.28) kgm/s = 0 + 823.46 kgm/s = 823.46 kgm/s
So the magnitude of the impulse J of the water on him is 823.46 kgm/s