Answer:
Who are the people for you then I can help you format the essay
Explanation:
Answer:


Explanation:
Height Of the watermelon when it is dropped is given as

time of fall under gravity

now if water melon start from rest then we have

acceleration due to gravity for watermelon

now we need to find the final speed of watermelon

so we will have


The cornea is responsible of refraction light 1/3 in eye.
<h3>What is the function of the cornea?</h3>
In addition to the protective function, it plays a fundamental role in the formation of vision. Transparent, it works like a lens over the iris, focusing light from the pupil towards the retina.
Normally, the cornea and lens deflect (refract) incoming light rays, focusing them on the retina. The shape of the cornea is fixed, but the lens changes shape to focus on objects at different distances from the eye.
See more about cornea at brainly.com/question/2297282
#SPJ12
Answer:
The change in temperature is
Explanation:
From the question we are told that
The temperature coefficient is 
The resistance of the filament is mathematically represented as
![R = R_o [1 + \alpha \Delta T]](https://tex.z-dn.net/?f=R%20%20%3D%20%20R_o%20%5B1%20%2B%20%5Calpha%20%20%5CDelta%20T%5D)
Where
is the initial resistance
Making the change in temperature the subject of the formula
![\Delta T = \frac{1}{\alpha } [\frac{R}{R_o} - 1 ]](https://tex.z-dn.net/?f=%5CDelta%20T%20%3D%20%5Cfrac%7B1%7D%7B%5Calpha%20%7D%20%5B%5Cfrac%7BR%7D%7BR_o%7D%20-%201%20%5D)
Now from ohm law

This implies that current varies inversely with current so

Substituting this we have
![\Delta T = \frac{1}{\alpha } [\frac{I_o}{I} - 1 ]](https://tex.z-dn.net/?f=%5CDelta%20T%20%20%3D%20%5Cfrac%7B1%7D%7B%5Calpha%20%7D%20%5B%5Cfrac%7BI_o%7D%7BI%7D%20-%201%20%5D)
From the question we are told that

Substituting this we have
![\Delta T = \frac{1}{\alpha } [\frac{I_o}{\frac{I_o}{8} } - 1 ]](https://tex.z-dn.net/?f=%5CDelta%20T%20%20%3D%20%5Cfrac%7B1%7D%7B%5Calpha%20%7D%20%5B%5Cfrac%7BI_o%7D%7B%5Cfrac%7BI_o%7D%7B8%7D%20%7D%20-%201%20%5D)
=> 
The equivalent of the Newton's second law for rotational motions is:

where

is the net torque acting on the object

is its moment of inertia

is the angular acceleration of the object.
Re-arranging the formula, we get

and since we know the net torque acting on the (vase+potter's wheel) system,

, and its angular acceleration,

, we can calculate the moment of inertia of the system: