1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Contact [7]
3 years ago
8

What is the magnitude and direction of the electric field atradiaConsider a coaxial conducting cable consisting of a conductingr

od of radius R1 inside of a thin-walled conducting shell of radius 2(both are infinite length). Suppose the inner rod hasradiusR1= 1.3 mm and outer shell has radiusR2= 10R1Ifthe net charge density on the center rod isq1= 3.4×10−12C/mand the outer shell isq2=−2q1,a.)What is the magnitude and direction of the electric field atradial distancer= 5R1from the center rod
Physics
1 answer:
Alexxx [7]3 years ago
5 0

Answer:

 E = 9.4 10⁶ N / C ,     The field goes from the inner cylinder to the outside

Explanation:

The best way to work this problem is with Gauss's law

             Ф = E. dA = qint / ε₀

 

We must define a Gaussian surface, which takes advantage of the symmetry of the problem. We select a cylinder with the faces perpendicular to the coaxial.

The flow on the faces is zero, since the field goes in the radial direction of the cylinders.

The area of ​​the cylinder is the length of the circle along the length of the cable

         dA = 2π dr L

          A = 2π r L

They indicate that the distance at which we must calculate the field is

         r = 5 R₁

         r = 5 1.3

         r = 6.5 mm

The radius of the outer shell is

         r₂ = 10 R₁

         r₂ = 10 1.3

         r₂ = 13 mm

         r₂ > r

When comparing these two values ​​we see that the field must be calculated between the two housings.

Gauss's law states that the charge is on the outside of the Gaussian surface does not contribute to the field, the charged on the inside of the surface is

         λ = q / L

         Qint = λ L

Let's replace

      E 2π r L = λ L /ε₀

       E = 1 / 2piε₀  λ / r

Let's calculate

         E = 1 / 2pi 8.85 10⁻¹²  3.4 10-12 / 6.5 10-3

         E = 9.4 10⁶ N / C

The field goes from the inner cylinder to the outside

You might be interested in
What is the kinetic energy of a 150 kg object that is moving at a speed of 15 m/s?
Oksanka [162]
It's 16,875

Hope I helped! ( Smiles )
4 0
3 years ago
An objects mechanical energy never changes it simply changes between
tatiyna
Actually moving and not. It is the sum of potential and kinetic energy.
4 0
3 years ago
What is due to acids formed when atmospheric and volcanic gases mix with water
Ilya [14]

Answer:

Acid rain results when sulfur dioxide (SO2) and nitrogen oxides (NOX) are emitted into the atmosphere and transported by wind and air currents. The SO2 and NOX react with water, oxygen, and other chemicals to form sulfuric and nitric acids. These then mix with water and other materials before falling to the ground.

Explanation:

5 0
3 years ago
An object that weighs 2.450 N is attached to an ideal massless spring and undergoes simple harmonic oscillations with a period o
Viktor [21]

Answer:

Spring constant, k = 24.1 N/m

Explanation:

Given that,

Weight of the object, W = 2.45 N

Time period of oscillation of simple harmonic motion, T = 0.64 s

To find,

Spring constant of the spring.

Solution,

In case of simple harmonic motion, the time period of oscillation is given by :

T=2\pi\sqrt{\dfrac{m}{k}}

m is the mass of object

m=\dfrac{W}{g}

m=\dfrac{2.45}{9.8}

m = 0.25 kg

k=\dfrac{4\pi^2m}{T^2}

k=\dfrac{4\pi^2\times 0.25}{(0.64)^2}

k = 24.09 N/m

or

k = 24.11 N/m

So, the spring constant of the spring is 24.1 N/m.

6 0
3 years ago
You are standing on a sheet of ice that covers the football stadium parking lot in Buffalo; there is negligible friction between
Anni [7]

Answer:

0.074m/s

Explanation:

We need the formula for conservation of momentum in a collision, this equation is given by,

m_1u_1+m_2u_2 = m_1v_1+m_2v_2

Where,

m_1 = mass of ball

m_2 = mass of the person

u_1 = Velocity of ball before collision

u_2 = Velocity of the person before collision

v_1 = velocity of ball afer collision

v_2= velocity of the person after collision

We know that after the collision, as the person as the ball have both the same velocity, then,

v_1 = v_2

m_1u_1 + m_2u_2 = (m_1+m_2)v_2

Re-arrenge to find v_2,

v_2 = \frac{m_1u_1+m_2u_2}{m_1+m_2}

Our values are,

m_1= 0.425kg

u_1= 12m/s

m_2= 68.5kg

u_2= 0m/s

Substituting,

v_2 = \frac{(0.425)(12)+(68.5)(0)}{0.425+68.5}

v_2 = 0.074m/s

<em />

<em>The speed of the person would be 0.074m/s after the collision between him/her and the ball</em>

7 0
3 years ago
Other questions:
  • Suppose a 0.04-kg car traveling at 2.00 m/s can barely break an egg. What is the min
    7·1 answer
  • A 5.0-C charge is 10m from a -2.0-C charge. The electrostatic force on the positive charge is
    14·2 answers
  • A stone is dropped at t = 0. A second stone, with 6 times the mass of the first, is dropped from the same point at t = 160 ms. (
    10·1 answer
  • 1 liter= 10 cubic centimeters?
    12·1 answer
  • How are Atomic number and mass number similar and difference?
    11·1 answer
  • Match the nitrogenous base of RNA with its complement. TTACCGG TAACGCA CGCATGT TGACCTA GCCAATT ACTGGAT arrowRight GCGTACA arrowR
    8·3 answers
  • A 1.5m wire carries a 3 A current when a potential difference of 74 V is applied. What is the resistance of the wire?
    10·1 answer
  • A transverse wave is found to have a vertical distance of 4 cm from a trough to a crest, a frequency of 12 Hz, and a horizontal
    5·1 answer
  • Please help!! This is the last question and i’m unsure! I will mark brainliest! Please try to provide a explanation you don’t ha
    13·1 answer
  • an 0.45-kg object is being pulled with a tension force of 14.2 n at a constant velocity of 3.41 m/s. what is the force of fricti
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!