Answer:
v= s/t
Explanation:
250 km/ h =69.44m/s
S1=2 times 69.44 ≈ 139m
Next 2.5 seconds:
S2 = 100m
Average speed:
v=139m+100m/2s+2.5s = 239/4.5s = 53.2 m/s=192km/h
Answer:
Speed of the speeder will be 28 m/sec
Explanation:
In first case police car is traveling with a speed of 90 km/hr
We can change 90 km/hr in m/sec
So 
Car is traveling for 1 sec with a constant speed so distance traveled in 1 sec = 25×1 = 25 m
After that car is accelerating with
for 7 sec
So distance traveled by car in these 7 sec

So total distance traveled by police car = 224 m
This distance is also same for speeder
Now let speeder is moving with constant velocity v
so 
v = 28 m/sec
Answer: 2561.7 pounds
Explanation:
If we assume the total weight of an airplane (in pounds units) as a <u>linear function</u> of the amount of fuel in its tank (in gallons) and we make a Weight vs amount of fuel graph, which resulting slope is 5.7, we can use the slope equation of the line:
(1)
Where:
is the slope of the line
is the airplane weight with 51 gallons of fuel in its tank (assuming we chose the Y axis for the airplane weight in the graph)
is the fuel in airplane's tank for a total weigth of 2390.7 pounds (assuming we chose the X axis for the a,ount of fuel in the tank in the graph)
This means we already have one point of the graph, which coordinate is:

Rewritting (1):
(2)
As Y is a function of X:
(3)
Substituting the known values:
(4)
(5)
(6)
Now, evaluating this function when X=81 (talking about the 81 gallons of fuel in the tank):
(7)
(8) This means the weight of the plane when it has 81 gallons of fuel in its tank is 2561.7 pounds.
Explanation:
It is given that,
Mass of the woman, m₁ = 52 kg
Angular velocity, 
Mass of disk, m₂ = 118 kg
Radius of the disk, r = 3.9 m
The moment of inertia of woman which is standing at the rim of a large disk is :


I₁ = 790.92 kg-m²
The moment of inertia of of the disk about an axis through its center is given by :


I₂ =897.39 kg-m²
Total moment of inertia of the system is given by :


I = 1688.31 kg-m²
The angular momentum of the system is :



So, the total angular momentum of the system is 4980.5 kg-m²/s. Hence, this is the required solution.