Answer:
1.93 mol Ca
Explanation:
Use Calcium's molar mass to convert g of Ca into mol of Ca.
Answer:
1.60×10¹⁴ s⁻¹
Explanation:
When an electron jumps from one energy level to a lower energy level some energy is released in the form of a photon.
To determine the temperature of the gas, we need to assume ideal gas to use the equation PV=nRT where P represents the pressure, V is the volume, n is the number of moles, T is the temperature and R is the universal gas constant. We calculate as follows:
PV = nRT
T = PV / nR
T = (1.26 atm) ( 208 L ) / 0.08205 L-atm/mol-K ( 9.95 mol )
T = 321.02 K
Hope this answers the question.
<h3>
Answer:</h3>
16.7 g H₂O
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Stoichiometry</u>
- Reading a Periodic Table
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Balanced] 2NaOH (s) + CO₂ (g) → Na₂CO₃ (s) + H₂O (l)
[Given] 1.85 mol NaOH
<u>Step 2: Identify Conversions</u>
[RxN] 2 mol NaOH → 1 mol H₂O
Molar Mass of H - 1.01 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of H₂O - 2(1.01) + 16.00 = 18.02 g/mol
<u>Step 3: Stoichiometry</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
16.6685 g H₂O ≈ 16.7 g H₂O
Answer:
the number of neutrons in above isotope = A - Z = 27 - 13 = 14. Note: The molar mass of aluminium, which is average of atomic masses of all isotopes = 26.981538 g/mol, since 13Al27 is the major isotope.
Explanation: