Answer:
Explanation:
The "traditional" form of Coulomb's law, explicitly the force between two point charges. To establish a similar relationship, you can use the integral form for a continuous charge distribution and calculate the field strength at a given point.
In the case of moving charges, we are in presence of a current, which generates magnetic effects that in turn exert force on moving charges, therefore, no longer can consider only the electrostatic force.
Answer:
A) ω = 6v/19L
B) K2/K1 = 3/19
Explanation:
Mr = Mass of rod
Mb = Mass of bullet = Mr/4
Ir = (1/3)(Mr)L²
Ib = MbRb²
Radius of rotation of bullet Rb = L/2
A) From conservation of angular momentum,
L1 = L2
(Mb)v(L/2) = (Ir+ Ib)ω2
Where Ir is moment of inertia of rod while Ib is moment of inertia of bullet.
(Mr/4)(vL/2) = [(1/3)(Mr)L² + (Mr/4)(L/2)²]ω2
(MrvL/8) = [((Mr)L²/3) + (MrL²/16)]ω2
Divide each term by Mr;
vL/8 = (L²/3 + L²/16)ω2
vL/8 = (19L²/48)ω2
Divide both sides by L to obtain;
v/8 = (19L/48)ω2
Thus;
ω2 = 48v/(19x8L) = 6v/19L
B) K1 = K1b + K1r
K1 = (1/2)(Mb)v² + Ir(w1²)
= (1/2)(Mr/4)v² + (1/3)(Mr)L²(0²)
= (1/8)(Mr)v²
K2 = (1/2)(Isys)(ω2²)
I(sys) is (Ir+ Ib). This gives us;
Isys = (19L²Mr/48)
K2 =(1/2)(19L²Mr/48)(6v/19L)²
= (1/2)(36v²Mr/(48x19)) = 3v²Mr/152
Thus, the ratio, K2/K1 =
[3v²Mr/152] / (1/8)(Mr)v² = 24/152 = 3/19
Answer:

Explanation:
From the question we are told that:
Mass of block 
Temperature of block 
Volume of water 
Temperature of water 
Density of water 
Specific heat of water 
Specific heat of copper 
Generally the equation for equilibrium stage is mathematically given by









The frequency of the wave is 
Explanation:
The frequency, the wavelength and the speed of a wave are related by the following equation:

where
c is the speed of the wave
f is the frequency
is the wavelength
For the radio wave in this problem,


Therefore, the frequency is:

Learn more about waves here:
brainly.com/question/5354733
brainly.com/question/9077368
#LearnwithBrainly
Answer: A) Wavelength and frequency are inversely proportional.
Explanation:
From the wave equation;
Velocity= frequency × wavelength
If the above equation is rearranged making the frequency the subject of formula, it would give;
Frequency= velocity/ wavelength.
From the above equation we see that frequency is inversely proportional to the wavelength. This means that for every increase in wavelength there would be a decrease in frequency, and for every increase in frequency there is a reduction in wavelength.