Answer:
the higher the ramp the less distance it will travel
Answer:
1.97 seconds
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.8 m/s²

Solving the above equation we get

So, the time the package was in the air is 1.97 seconds
Answer:
Initial Velocity is 4 m/s
Explanation:
What is acceleration?
It is the change in velocity with respect to time, or the rate of change of velocity.
We can write this as:

Where
a is the acceleration
v is velocity
t is time
is "change in"
For this problem , we are given
a = 1.2
t = 10
Putting into formula, we get:

So, the change in velocity is 12 m/s
The change in velocity can also be written as:

It is given Final Velocity = 16, so we put it into formula and find Initial Velocity. Shown Below:

hence,
Initial Velocity is 4 m/s
1). From the frame of reference of a passenger on the airplane looking out of his window, the tree appears to be moving, at roughly 300 miles per hour toward the left of the picture.
2). The SI unit best suited to measuring the height of a building is the meter.
3). 'Displacement' is the straight-line distance and direction from the start-point to the end-point, regardless of the path that was followed to get there.
The ball started out in the child's hand, and it ended up 2 meters away from her in the direction of the wall. So the displacement of the ball from the beginning to the end of the story is: 2 meters toward the wall.
Answer:
Refer to the attachment for solution (1).
<h3><u>Calculating time taken by it to stop (t) :</u></h3>
By using the second equation of motion,
→ v = u + at
- v denotes final velocity
- u denotes initial velocity
- t denotes time
- a denotes acceleration
→ 0 = 5 + (-5/6)t
→ 0 = 5 - (5/6)t
→ 0 + (5/6)t = 5
→ (5/6)t = 5
→ t = 5 ÷ (5/6)
→ t = 5 × (6/5)
→ t = 6 seconds
→ Time taken to stop = 6 seconds