Answer:
An axis is an invisible line around which an object rotates, or spins. The points where an axis intersects with an object's surface are the object's North and South Poles.
Explanation:
The Earth's axis is represented by the red line. The white circle represents axial precission, the slow "wobble" of the axis.
Answer: Time.
Explanation:
Hey there!!!
The reason is,
According to the question we have,
Initial velocity = 0m/s { as it starts from rest}.
Final velocity = 650 m/s
acceleration = 5m/s^2.
Looking on this formula,

Where "v" represents final velocity, "u" represents initial velocity and "a" represents acceleration. We dont have is time "t".
So, it's obvious that tine is an unknown variable.
<em><u>Hope</u></em><em><u> </u></em><em><u>it helps</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
Olivia is on a swing at the playground. The kinetic energy is increasing and her potential energy decreasing at point X.
<h3>What is kinetic energy and potential energy?</h3>
The kinetic energy of an object is the ability to do work by virtue of its motion and potential energy is the ability to do work by virtue of its position.
At point W and Z, Olivia is at the maximum displacement from the mean position, where kinetic energy is zero and potential energy is maximum.
At point Y, it is approaching to increase its potential energy and decreasing kinetic energy. Opposite to this, at point X, kinetic energy is increasing and potential energy is decreasing.
Thus, the kinetic energy is increasing and her potential energy decreasing at point X.
Learn more about kinetic energy and potential energy.
brainly.com/question/15764612
#SPJ1
Answer:


Explanation:
Given:
temperature of source reservoir, 
temperature of sink reservoir, 
energy absorbed from the source, 
work done, 
a.
<u>Now change in entropy of the surrounding:</u>

<em>Since heat engine is a device that absorbs heat from a high temperature reservoir and does some work giving out heat in the universe as the byproduct.</em>



b.
<u>We know Carnot efficiency is given as:</u>



<u>Now the Carnot work done:</u>


.......................(1)
c.
From eq. (1) we have the Carnot work, so the difference:



Now, we find:

True, but only if the temperature of the gas doesn't change ...
which is pretty hard to manage when you're compressing it.
I think Boyle's law actually says something like
(pressure) x (volume) / (temperature) = constant.
So you can see that if you want to say anything about two of the
quantities, you always have to stipulate that the statement is true
as long as the third one doesn't change.