The weight changes but the mass will stay the same.
History is open to ongoing and changing interpretations because changing <span>values limit interpretation.
So your answer is A.</span>
<h2>
Answer:</h2>
<h2>3m</h2>
<h3>The wavelength of 100-MHz radio waves is 3 m, yet using the sensitivity of the resonant frequency to the magnetic field strength, details smaller than a millimeter can be imaged.</h3>
<h2>Hope this helps you ❤️</h2>
<h2>MaRk mE aS braiNliest ❤️</h2>
(a) The velocity of the object on the x-axis is 6 m/s, while on the y-axis is 2 m/s, so the magnitude of its velocity is the resultant of the velocities on the two axes:

And so, the kinetic energy of the object is

(b) The new velocity is 8.00 m/s on the x-axis and 4.00 m/s on the y-axis, so the magnitude of the new velocity is

And so the new kinetic energy is

So, the work done on the object is the variation of kinetic energy of the object:
Answer:
Nitrogen, Oxygen, Argon.
Explanation:
The three (3) most abundant gases in the dry atmosphere are"
- Nitrogen
- Oxygen
- Argon
These are not the only components of dry air. Dry atmosphere is made up of:
- 78.09% Nitrogen;
- 20.95% Oxygen;
- 0.93% Argon;
- 0.04% Carbon dioxide;
- Other gases