Answer: c. Generally, metals are ductile.
Explanation:
From the options given in the question, the correct statement is that"Generally, metals are ductile.
Ductility of a metal simply means that a metal can be plastically deform before it is then fractured. It implies that metals can be drawn to thin wires. The only exception we have in this case is mercury.
Answer:
f = 19,877 cm and P = 5D
Explanation:
This is a lens focal length exercise, which must be solved with the optical constructor equation
1 / f = 1 / p + 1 / q
where f is the focal length, p is the distance to the object and q is the distance to the image.
In this case the object is placed p = 25 cm from the eye, to be able to see it clearly the image must be at q = 97 cm from the eye
let's calculate
1 / f = 1/97 + 1/25
1 / f = 0.05
f = 19,877 cm
the power of a lens is defined by the inverse of the focal length in meters
P = 1 / f
P = 1 / 19,877 10-2
P = 5D
1.Density of the material building the raft must be lower than the water.
<span>2. Material must not react with water. </span>
<span>3.Material must have high strength. </span>
<span>4.Raft must be wide in-order to avoid drawing in the river.</span>
Answer:
289282
Explanation:
r = Radius of plate = 0.52 mm
d = Plate separation = 0.013 mm
A = Area = 
V = Potential applied = 2 mV
k = Dielectric constant = 40
= Electric constant = 
Capacitance is given by

Charge is given by

Number of electron is given by

The number of charge carriers that will accumulate on this capacitor is approximately 289282.
Answer: 33 mm
Explanation:
Given
Diameter of the tank, d = 9 m, so that, radius = d/2 = 9/2 = 4.5 m
Internal pressure of gas, P(i) = 1.5 MPa
Yield strength of steel, P(y) = 340 MPa
Factor of safety = 0.3
Allowable stress = 340 * 0.3 = 102 MPa
σ = pr / 2t, where
σ = allowable stress
p = internal pressure
r = radius of the tank
t = minimum wall thickness
t = pr / 2σ
t = 1.5*10^6 * 4.5 / 2 * 102*10^6
t = 0.033 m
t = 33 mm
The minimum thickness of the wall required is therefore, 33 mm