Answer:
A. 8600 J
General Formulas and Concepts:
<u>Thermochemistry</u>
Specific Heat Formula: q = mcΔT
- q is heat (in J)
- m is mass (in g)
- c is specific heat (in J/g °C)
- ΔT is change in temperature (in °C)
Explanation:
<u>Step 1: Define</u>
[Given] <em>m</em> = 1600 g
[Given] ΔT = 214 °C - 202 °C = 12 °C
[Given] <em>c</em> = 0.450 J/g °C
[Solve] <em>q</em>
<u>Step 2: Find Heat</u>
- Substitute in variables [Specific Heat Formula]: q = (1600 g)(0.450 J/g °C)(12 °C)
- Multiply [Cancel out units]: q = (720 J/°C)(12 °C)
- Multiply [Cancel out units]: q = 8640 J
<u>Step 3: Check</u>
<em>Follow sig fig rules and round. We are given 2 sig figs as our lowest.</em>
8640 J ≈ 8600 J
Topic: AP Chemistry
Unit: Thermodynamics
The correct option is C.
Finance charge on credit card refers to the interest you pay for borrowing money when you are using a credit card. It is the interest you are charged on the debts you owe and sometimes it might include other charges such as penalty fees for late payment. Individual finance charge is usually calculated using the the person APR [Annual Percentage Rate], amount of debt owe and the time period been considered. The higher your debts, the higher your finance charge.
Answer:
Gallium III fluoride (pretty sure)
Explanation:
Answer:
Helium.
Explanation:
Hydrogen in the bomb is used in the process of detonation. A stream of tritium, an isotope of hydrogen is released and this fissionable material is very unstable thus it turns during the detonation to helium 3. This triggers a series of reactions that produce large amounts of heat to the surrounding environment causing destruction.
Answer:
9.39 × 10²² molecules
Explanation:
We can find the moles of gases (n) using the ideal gas equation.
P . V = n . R . T
where,
P is the pressure (standard pressure = 1 atm)
V is the volume
R is the ideal gas constant
T is the absolute temperature (standard temperature = 273.15 K)

There are 6.02 × 10²³ molecules in 1 mol (Avogadro's number). Then,
