In order to find the answer, use an ICE chart:
Ca(IO3)2...Ca2+......IO3-
<span>some.......0..........0 </span>
<span>less.......+x......+2x </span>
<span>less........x.........2x
</span>
<span>Ca(IO₃)₂ ⇄ Ca⁺² + 2 IO⁻³
</span>
K sp = [Ca⁺²][IO₃⁻]²
K sp = (x) (2 x)² = 4 x³
7.1 x 10⁻⁷ = 4 x³
<span>x = molar solubility = 5.6 x 10</span>⁻³ M
The answer is 5.6 x 10 ^ 3 M. (molar solubility)
Answer:
option B,C and A are compound
Q1. The answer is 3 minutes.
Let's first calculate the remaining amount in percent:
If 960g is 100 percent (starting amount), 30 g is how many percents:
960 g : 100% = 30 g : x
x = 30 g * 100% / 960 g = 3.125% = 0.03125
Now, using the formula to calculate the number of half-lives:
(1/2)ⁿ = x,
where
x is the remaining amount: x = 0.03125
n is the number of half-lives
1/2 stands for half-life.
(1/2)ⁿ = 0.03125
⇒ n*log(1/2) = log(0.03125)
n = log(0.03125)/log(1/2) = log(0.03125)/log(0.5) = -1.505/-0.301 ≈ 5
The number of half-lives is 5.
Now, <span>the number of half-lives (n) is a quotient of total time elapsed (T) and length of half-life (L):
n = T/L
We know:
n = 5
T = 15 min
L = ?
Thus
L = T/n
L = 15 min/5 = 3 minutes
Q2. Filtration should be chosen.
Filtration and distillation are used to separate mixtures - filtration for the separation of heterogeneous mixtures and </span>distillation for the separation of homogeneous mixtures. Imagine that your pile of soil is a mixture. It consists of different components (the leaves, acorns, twigs), so it is the heterogeneous mixture. Therefore, to separate the leaves, acorns, twigs you will use filtration.
They conduct electricity. They tend to have conductors of electricity.
<span>In biology and ecology, </span>abiotic<span> components
or </span>abiotic<span> factors
are non-living chemical and physical parts of the </span>environment<span> that
affect living organisms and the functioning of ecosystems. </span>Abiotic<span> factors
and phenomena associated with them underpin all biology.</span> So the oil
spill is a non-living chemical