Answer:
t = 23.9nS
Explanation:
given :
Area A= 10 cm by 2 cm => 2 x 10^-2m x 10 x 10^-2m
distance d= 1mm=> 0.001
resistor R= 975 ohm
Capacitance can be calculated through the following formula,
C = (ε0 x A )/d
C = (8.85 x 10^-12 x (2 x 10^-2 x 10 x 10^-2))/0.001
C = 17.7 x 10^-12 (pico 'p' = 10^-12)
C = 17.7pF
the voltage between two plates is related to time, There we use the following formula of the final voltage
Vc = Vx (1-e^-(t/CR))
75 = 100 x (1-e^-(t/CR))
75/100 = (1-e^-(t/CR))
.75 = (1-e^-(t/CR))
.75 -1 = -e^-(t/CR)
-0.25 = -e^-(t/CR) --->(cancelling out the negative sign)
e^-(t/CR) = 0.25
in order to remove the exponent, take logs on both sides
-t/CR = ln (0.25)
t/CR = -ln(0.25)
t = -CR x ln (0.25)
t = -(17.7 x 10^-12 x 975) x (-1.38629)
t = 23.9 x
t = 23.9ns
Thus, it took 23.9ns for the potential difference between the deflection plates to reach 75 volts
Answer: friction reduces the speed during motion
Explanation:
The more the friction, the lesser the speed during motion
Answer:
a) μ = 0.475
, b) μ = 0.433
Explanation:
a) For this exercise of Newton's second law, we create a reference system with the x-axis parallel to the plane and the y-axis perpendicular to it
X axis
Wₓ - fr = m a
the friction force has the expression
fr = μ N
y Axis
N -
= 0
let's use trigonometry for the components the weight
sin 27 = Wₓ / W
Wₓ = W sin 27
cos 27 = W_{y} / W
W_{y} = W cos 27
N = W cos 27
W sin 27 - μ W cos 27 = m a
mg sin 27 - μ mg cos 27 = m a
μ = (g sin 27 - a) / (g cos 27)
very = tan 27 - a / g sec 27
μ = 0.510 - 0.0344
μ = 0.475
b) now the block starts with an initial speed of 3m / s. In Newton's second law velocity does not appear, so this term does not affect the result, the change in slope does affect the result
μ = tan 25 - 0.3 / 9.8 sec 25
μ = 0.466 -0.03378
μ = 0.433
Newton's Second Law would probably best describe this.
F = ma
Where F = force
m = mass
a = acceleration
The force required is dependant on the mass, and where the mass is greater, the force required will be greater.