Hg(No3)2 +NaSO4 --->2NaNO3 + HgSO4(s)
calculate the moles of each reactant
moles=mass/molar mass
moles of Hg(NO3)2= 51.429g/ 324.6 g/mol(molar mass of Hg(NO3)2)=0.158 moles
moles Na2SO4 16.642g/142g/mol= 0.117 moles of Na2SO4
Na2SO4 is the limiting reagent in the equation and by use mole ratio Na2So4 to HgSO4 is 1:1 therefore the moles of HgSO4 =0.117 moles
mass of HgSO4=moles x molar mass of HgSo4= 0.117 g x 303.6g/mol= 35.5212 grams
Answer:
The formula of the original halide is SrCl₂.
Explanation:
- The balanced equation of this reaction is:
SrX₂ + H₂SO₄ → SrSO₄ + 2 HX, where X is the halide.
- From the equation stichiometry, 1.0 mole of strontium halide will result in 1.0 mole of SrSO₄.
- The number of moles of SrSO₄ <em>(n = mass/molar mass) </em>= (0.755 g) / (183.68 g/mole) = 4.11 x 10⁻³ mole.
- The number of moles of SrX are 4.11 x 10⁻³ moles from the stichiometry of the balanced equation.
- n = mass / molar mass, n = 4.11 x 10⁻³ moles and mass = 0.652 g.
- The molar mass of SrX₂ = mass / n = (0.652) / (4.11 x 10⁻³ moles) = 158.62 g/mole.
- The molar mass of SrX₂ (158.62 g/mole) = Atomic mass of Sr (87.62 g/mole) + (2 x Atomic mass of halide X).
- The atomic mass of halide X = (158.62 g/mole) - (87.62 g/mole) / 2 = 71 / 2 g/mole = 35.5 g/mole.
- This is the atomic mass of Cl.
- <em>So, the formula of the original halide is SrCl₂</em>.
Answer:
Correct answer is (D). as a weak acid it can cross the membrane when in its uncharged form.
Explanation:
Aspirin (acetylsalicylic acid, ASA) is an analgesic and anti-inflammatory agent use in the treatment of gentle to moderate pain, inflammation and fever. It is absorb in the stomach and intestine in an unchanged form.
No, because humans are much more complex than peas.