First, calculate the mass of sodium in g with the help of molar mass and number of moles.
Number of moles =
(1)
Molar mass of sodium =
Substitute the given value of number of moles and molar mass of sodium in formula (1)
(1)
(1)
mass of sodium in g = 
Now, according to conversion factor, 1 g = 1000 mg
So,
of sodium =
=
of sodium
Thus, mass of sodium in mg =
You'll want to add three amounts of heat.
(1) Specific heat of lowering the temperature from -135°C to the melting point -114°C
(2) Latent heat of fusion/melting
(3) Specific heat of elevating the temperature from -114°C to -50°C
(1) E = mCΔT = (25 g)(0.97 J/g·°C)(1 kJ/1000 J)(-114 - -135) = 0.509 kJ
(2) E = mΔH = (25 g)(5.02 kJ/mol)(1 mol/46.07 g ethanol) = 2.724 kJ
(3) E = mCΔT = (25 g)(2.3 J/g·°C)(1 kJ/1000 J)(-50 - -114) = 3.68 kJ
<em>Summing up all energies, the answer is 6.913 kJ.</em>
Answer: 21.5kg in grams is 21,500 grams
21.5kg in mg is 215,000,00
Explanation:
This is a D. combustion reaction
That is because you add O2 which is necessary for a combustion, while the results are CO2 and water. What you are missing is a ---> after the 2O2 (g)
G. H2S contains two hydrogen atoms