1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kupik [55]
3 years ago
5

How does electrical energy differ from electromagnetic energy?

Physics
1 answer:
xenn [34]3 years ago
7 0

Answer:

Electric energy is all about seperation of opposite charges and bringing similar charges together. ... Electromagnetic energy is energy in an electromagnetic wave, thus it is not associated with any particular charge it is in the oscillating fields themselves (Electric and Magnetic fields)

You might be interested in
What is a force? A. A force is a form of energy. B. A force is equivalent to work. C. A force is a substance that reacts with ma
34kurt
You’re answer would be D
5 0
3 years ago
Read 2 more answers
A)If the rms value of the electric field in an electromagnetic wave is doubled, by what factor does the rms value of the magneti
Ghella [55]

A) The magnetic field doubles as well

The relationship between rms value of the electric field and rms value of the magnetic field for an electromagnetic wave is the following:

E_{rms}=cB_{rms}

where

E_rms is the magnitude of the electric field

c is the speed of light

B_rms is the magnitude of the magnetic field

From the equation, we see that the electric field and the magnetic field are directly proportional: therefore, if the rms value of the electric field is doubled, then the rms value of the magnetic field will double as well.

B) The intensity will quadruple

The intensity of an electromagnetic wave is given by

I=\frac{1}{2}c\epsilon_0 E_0^2

where

c is the speed of light

\epsilon_0 is the vacuum permittivity

E_0 is the peak intensity of the electric field

The rms value of the electric field is related to the peak value by

E_{rms}=\frac{E_0}{\sqrt{2}}

So we can rewrite the equation for the intensity as

I=c\epsilon_0 E_{rms}^2

we see that the intensity is proportional to the square of the rms value of the electric field: therefore, if the rms value of the electric field is doubled, the average intensity of the wave will quadruple.

7 0
3 years ago
If Q = 16 nC, a = 3.0 m, and b = 4.0 m, what is the magnitude of the electric field at point P?
Lynna [10]
In BPC

tan\theta =a/b = 3/4

\theta = tan^-1(0.75)

\theta = 36.87 deg

BP = sqrt(a^2 + b^2) = sqrt((3)^2 + (4)^2) = 5 m

Eb = k Q/BP^2 = (9 x 10^9) (16 x 10^-9)/5^2 = 5.76 N/C

Ea = k Q/AP^2 = (9 x 10^9) (16 x 10^-9)/4^2 = 9 N/C

Ec = k Q/CP^2 = (9 x 10^9) (16 x 10^-9)/3^2 = 16 N/C

Net electric field along X-direction is given as

Ex = Ea + Eb Cos36.87 = (9) + (5.76) Cos36.87 = 13.6 N/C

Net electric field along X-direction is given as

Ey = Ec + Eb Sin36.87 = (16) + (5.76) Sin36.87 = 19.5 N/C

Net electric field is given as

E = sqrt(Ex^2 + Ey^2) = sqrt((13.6)^2 + (19.5)^2) = 23.8 N/C
8 0
3 years ago
The relationship that exists between gravity and distance and mass respectively.
ruslelena [56]

Answer:

D...............................

7 0
3 years ago
A two-liter bottle of your favorite beverage has just been removed from the trunk of your car. The temperature of the beverage i
Ksivusya [100]

Answer:

a) 209.3 kilojoules must be removed from two liter of beverage, b) A rate of heat removal of 1.163 kilowatts is required to cool down 10 2-liter bottles, c) Cooling 10 2-L bottles during 30 minutes costs 4.9 cents.

Explanation:

a) <em>How much heat energy must be removed from your two liters of beverage?</em>

At first we suppose that the beverage has the mass and specific heat of water and that there are no energy interactions between the bottle and its surroundings.

From the First Law of Thermodynamics and definition of sensible heat, we get that amount of removed heat (Q), measured in kilojoules, is represented by the following formula:

Q = \rho \cdot V\cdot c\cdot (T_{o}-T_{f}) (Eq. 1)

Where:

\rho - Density of the beverage, measured in kilograms per cubic meter.

V - Volume of the bottle, measured in cubic meters.

c - Specific heat of water, measured in kilojoules per kilogram-Celsius.

T_{o}, T_{f} - Initial and final temperatures, measured in Celsius.

If we know that \rho = 1000\,\frac{kg}{m^{3}}, V = 2\times 10^{-3}\,m^{3}, c = 4.186\,\frac{kJ}{kg\cdot ^{\circ}C}, T_{o} = 35\,^{\circ}C and T_{f} = 10\,^{\circ}C, then:

Q = \left(1000\,\frac{kg}{m^{3}}\right)\cdot (2\times 10^{-3}\,m^{3})\cdot \left(4.186\,\frac{kJ}{kg\cdot ^{\circ}C} \right) \cdot (35\,^{\circ}C-10\,^{\circ}C)

Q = 209.3\,kJ

209.3 kilojoules must be removed from two liter of beverage.

b) <em>You are having a party and need to cool 10 of these two-liter bottles in one-half hour. What rate of heat removal, in kW, is required?</em>

The total amount of heat that must be removed from 10 2-L bottles is:

Q_{T} = 10\cdot (209.3\,kJ)

Q_{T} = 2093\,kJ

If we suppose that bottles are cooled at constant rate, then, rate of heat removal is determined by this formula:

\dot Q = \frac{Q_{T}}{\Delta t} (Eq. 2)

Where:

Q_{T} - Total heat, measured in kilojoules.

\Delta t - Time, measured in seconds.

\dot Q - Rate of heat removal, measured in kilowatts.

If we know that Q_{T} = 2093\,kJ and \Delta t = 1800\,s, we find that rate of heat removal is:

\dot Q = \frac{2093\,kJ}{1800\,s}

\dot Q = 1.163\,kW

A rate of heat removal of 1.163 kilowatts is required to cool down 10 2-liter bottles.

c) <em>Assuming that your refrigerator can accomplish this and that electricity costs 8.5 cents per kW-hr, how much will it cost to cool these 10 bottles (in $)?</em>

A kilowatt-hour equals 3600 kilojoules. The electricity cost is equal to the  removal heat of 10 bottles (Q_{T}), measured in kilojoules, and unit electricity cost (c), measured in US dollars per kilowatt-hour. That is:

C = c\cdot Q_{T}

If we know that c = 0.085\,\frac{USD}{kWh} and Q_{T} = 2093\,kJ, the total cost of cooling 10 bottles is:

C = \left(0.085\,\frac{USD}{kWh}\right)\cdot \left(2093\,kJ\right)\cdot \left(\frac{1}{3600}\,\frac{kWh}{kJ}  \right)

C = 0.049\,USD

Cooling 10 2-L bottles during 30 minutes costs 4.9 cents.

3 0
4 years ago
Other questions:
  • A uniform crate with a mass of 22 kg must be moved up along the 15° incline without tipping. The force P is horizontal. Determin
    8·1 answer
  • An object becomes positively charged when it
    10·1 answer
  • Manipulating a constraint at any given time may produce a __________ change in movement. However, in motor development, we are m
    5·1 answer
  • Which range is expected to have higher accuracy and why 20V or 200V?
    12·1 answer
  • An energy-efficient water heater draws 4 amps in a 220-volt circuit. It costs $75 more that a standard water heater that draws 1
    13·1 answer
  • The addition of electron shells results in<br><br> shielding of electrons from the nucleus.
    14·1 answer
  • 6. Find the MAGNITUDE and ANGLE (counter-clockwise, from q=00, on the x-axis) of the vector C = A + B.
    9·1 answer
  • A 30.0-kg crate is initially moving with a velocity that has magnitude 3.90 m/s in a direction 37.0 west of north. How much work
    13·1 answer
  • Glaciers, weather, and water shape Earth by _____.
    7·2 answers
  • What is a model pls write in ur own words
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!