1. Law of conservation of energy states that energy cannot be created, nor destroyed, for example, windmills take kinetic energy(movement energy) and convert it into electrical energy using gears and a generator as well as the blades.
so this supports it because the pendulum never reaches the same height twice unless you reset it so the energy is always getting less and less and not randomly getting back onto the pendulum.
2.Gravity, friction and air resistance slow it down as well
3. at the top, potential energy is the amount of energy something has relative to the amount it can disperse before stopping, for example, a book on a shelf has more potential energy than that of a book on a table, this is because when the shelf book falls it will create more energy than the table book.
Products such as antifreeze are composed of organic compounds that are classified as <em>alcohols</em>. (a)
Maybe those other classes of chemicals also lower the freezing temperature of water, just like alcohol does. I don't know. But alcohol is what's used to make anti-freeze. I'm guessing alcohol must be cheaper, less toxic, and less corrosive inside the engines' cooling systems than any of that other stuff is.
Answer:
b
Explanation:
the ability for gases to compress is extremely helpful it allows tanks of oxygen to hold enough air for up to two hours and the strange thing about compression is that it allows some liquids to stay liquid at their boiling point allowing liquid nitrogen to stay liquid at room temperature
Answer:
No, neutrons have about the same mass as a proton, but both have more mass than electrons.
Hope this helps a bit,
Flips
Answer:
Explanation:
The inclined plane
An inclined plane consists of a sloping surface; it is used for raising heavy bodies. The plane offers a mechanical advantage in that the force required to move an object up the incline is less than the weight being raised (discounting friction). The steeper the slope, or incline, the more nearly the required force approaches the actual weight. Expressed mathematically, the force F required to move a block D up an inclined plane without friction is equal to its weight W times the sine of the angle the inclined plane makes with the horizontal (θ). The equation is F = W sin θ.
The lever
A lever is a bar or board that rests on a support called a fulcrum. A downward force exerted on one end of the lever can be transferred and increased in an upward direction at the other end, allowing a small force to lift a heavy weight.
The wedge
A wedge is an object that tapers to a thin edge. Pushing the wedge in one direction creates a force in a sideways direction. It is usually made of metal or wood and is used for splitting, lifting, or tightening, as in securing a hammer head onto its handle.
The wheel and axle
A wheel and axle is made up of a circular frame (the wheel) that revolves on a shaft or rod (the axle). In its earliest form it was probably used for raising weights or water buckets from wells.
Its principle of operation is best explained by way of a device with a large gear and a small gear attached to the same shaft. The tendency of a force, F, applied at the radius R on the large gear to turn the shaft is sufficient to overcome the larger force W at the radius r on the small gear. The force amplification, or mechanical advantage, is equal to the ratio of the two forces (W:F) and also equal to the ratio of the radii of the two gears (R:r)