Answer:
c) billions
Explanation:
there are more than 0 stars, because our sun is a star
and there are more than one because the milky way has a lot of suns
there aren't infinite because the milky way is finite it has some volume and even you made the smallest star possible you wouldn't have infinite stars
so the only option is billions
Answer:
F = 4.147 × 10^23
v = 1.31 × 10^4
Explanation:
Given the following :
mass of Jupiter (m1) = 1.9 × 10^27
Mass of sun (m2) = 1.99 × 10^30
Distance between sun and jupiter (r) = 7.8 × 10^11m
Gravitational force (F) :
(Gm1m2) / r^2
Where ; G = 6.673×10^-11 ( Gravitational constant)
F = [(6.673×10^-11) × (1.9 × 10^27) × (1.99 × 10^30)] / (7.8 × 10^11)^2
F = [25.231 × 10^(-11+27+30)] / (60.84 × 10^22)
F = (25.231 × 10^46) / (60.84 × 10^22)
F = 3.235 × 10^(46 - 22)
F = 0.4147 × 10^24
F = 4.147 × 10^23
Speed of Jupiter (v) :
v = √(Fr) / m1
v = √[(4.147 × 10^23) × (7.8 × 10^11) / (1.9 × 10^27)
v = √32.3466 × 10^(23+11) / 1.9 × 10^27
v = √32.3466× 10^34 / 1.9 × 10^27
v = √17. 023 × 10^34-27
v = √17.023 × 10^7
v = 13047.221
v = 1.31 × 10^4
Answer:
Electrons.
Explanation:
Electricity was discovered before the discovery of electrons by J.J Thompson in 1896. Before the electron, it was thought that it is the positive ions that move through the wire and carry current—that's why today the conventional current represents the flow of positive charges.
After J.J Thompson's discovery of the electrons, it was realized that it is the electrons that actually carry the current through the conductor. But changing the direction of the conventional current didn't seem appropriate, and that's why the convention continues to be used to this day—reminding us that once it were the positive ions that were thought to carry the current.
The answer is noble gas. Since noble gas are constant and
unreactive. They can still shape compounds with other elements.
Group 15 is also group 5A and Group 17 is also group 7A. Elements in these sets
do not typically form ionic bonds; they are more on creating covalent bonds
since they're non-metals.
Therefore, that leaves us with B. from Group 1. They are metals (but Hydrogen)
which respond violently with water, and they form ionic bonds, for they drop
outer electrons easily.
The image will form in the vicinity of F. Its nature will be small and inverted