Supposing the runner is condensed to a point and moves upward at 2.2 m/s.
It takes a time = 2.2/g = 2.2/9.8 = 0.22 seconds to increase to max height.
Now looking at this condition in opposite - that is the runner is at max height and drops back to earth in 0.22 s (symmetry of this kind of motion).
From what height does any object take 0.22 s to fall to earth (supposing there is no air friction)?
d = 1/2gt²= (0.5)(9.8)(0.22)²= 0.24 m
Answer:

Explanation:
The magnitude of the electrical force between the two point charges is

where
k is the Coulomb's constant
is the magnitude of each charge
r = 3.00 m is the separation between the two charges
Substituting the numbers into the formula, we find

The answer would be
C. Rods and Cones
Answer:
270 m
Explanation:
Given:
v₀ = 63 m/s
a = 2.8 m/s²
t = 4.0 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (63 m/s) (4.0 s) + ½ (2.8 m/s²) (4.0 s)²
Δx = 274.4 m
Rounded to two significant figures, the displacement is 270 meters.