Answer:

Explanation:
We are given the mass of two reactants, so this is a limiting reactant problem.
We know that we will need mases, moles, and molar masses, so, let's assemble all the data in one place, with molar masses above the formulas and masses below them.
M_r: 17.03 32.00 18.02
4NH₃ + 5O₂ ⟶ 4NO + 6H₂O
m/g: 70.1 70.1
Step 1. Calculate the moles of each reactant

Step 2. Identify the limiting reactant
Calculate the moles of H₂O we can obtain from each reactant.
From NH₃:
The molar ratio of H₂O:NH₃ is 6:4.

From O₂:
The molar ratio of H₂O:O₂ is 6:5.

O₂ is the limiting reactant because it gives the smaller amount of H₂O.
Step 3. Calculate the theoretical yield.

Answer:
Explanation:
i dont know
Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray solid which bears a close physical resemblance to the other five elements in the second column of the periodic .
Symbol: Mg
Atomic mass: 24.305 u
Electron configuration: [Ne] 3s2
Atomic number: 12
Melting point: 650 °C
Oxidation number: 2
Single-celled organisms<span> which use asexual reproduction can </span>do<span> so very rapidly simply by </span>dividing<span> into two equal halves. This is called binary fission. In yeasts the </span>cell<span> does not </span>divide<span> equally in two halves; instead, there is a large mother </span>cell<span> and a smaller daughter </span>cell<span>. This is called budding.</span>
<span>solution of KI becomes saturated at 10 degrees when around 135-138g KI are added to 100 g of water, so it should be still unsaturated, A. unsaturated (although it is very close to saturation)</span>
There are three subatomic particles known: (1) electron which is found outside the nucleus of an atom and (2 and 3) protons and neutrons which are both inside the nucleus. As they are outside the nucleus, it is easier to transport electron than any other subatomic particle. Thus, atom and its ion differ in the number of electrons.