Answer:
Explanation:
From the equation:
Power dissipated= square of voltage supplied by battery ÷ Resistance of the load
i.e P= V^2/R
It means that at constant voltage, the the power consumed is inversely related to the resistance. Therefore the 10W bulb which has a higher resistance will consume less power using the sufficiently excess power dissipated to glow brighter than the 250W bulb which has a low resistance. The power dissipated will partly be used to overcome this low resistance making less power available for heating up the 250W bulb .
Explanation:
A router is a switching device for networks, which is able to route network packets, based on their addresses, to other networks or devices. Among other things, they are used for Internet access, for coupling networks or for connecting branch offices to a central office via VPN (Virtual Private Network
Answer:
Check the 2nd, 3rd and 4th statements.
Explanation:
Answer:
The kinetic energy correction factor the depends on the shape of the cross section of the pipe and the velocity distribution.
Explanation:
The kinetic energy correction factor take into account that the velocity distribution over the pipe cross section is not uniform. In that case, neither the pressure nor the temperature are involving and as we can notice, the velocity distribution depends only on the shape of the cross section.
Answer:
a) 0.684
b) 0.90
Explanation:
Catalyst
EO + W → EG
<u>a) calculate the conversion exiting the first reactor </u>
CAo = 16.1 / 2 mol/dm^3
Given that there are two stream one contains 16.1 mol/dm^3 while the other contains 0.9 wt% catalyst
Vo = 7.24 dm^3/s
Vm = 800 gal = 3028 dm^3
hence Im = Vin/ Vo = (3028 dm^3) / (7.24dm^3/s) = 418.232 secs = 6.97 mins
next determine the value of conversion exiting the reactor ( Xai ) using the relation below
KIm =
------ ( 1 )
make Xai subject of the relation
Xai = KIm / 1 + KIm --- ( 2 )
<em>where : K = 0.311 , Im = 6.97 ( input values into equation 2 )</em>
Xai = 0.684
<u>B) calculate the conversion exiting the second reactor</u>
CA1 = CA0 ( 1 - Xai )
therefore CA1 = 2.5438 mol/dm^3
Vo = 7.24 dm^3/s
To determine the value of the conversion exiting the second reactor ( Xa2 ) we will use the relation below
XA2 = ( Xai + Im K ) / ( Im K + 1 ) ----- ( 3 )
<em> where : Xai = 0.684 , Im = 6.97, and K = 0.311 ( input values into equation 3 )</em>
XA2 = 0.90
<u />
<u />
<u />