Batteries supply electrons to the circuit by releasing negatively charged atoms or ions. These ions are produced by the batteries through a chemical reaction that spontaneously occurs within the battery. So the negative end of the battery pushes the ions towards the positive end of the circuit with the help of the voltage. This is why eventually, batteries "run out" when the electrode is used up and the chemical reaction can no longer continue.
Answer:
11 m/s
Explanation:
Draw a free body diagram. There are two forces acting on the car:
Weigh force mg pulling down
Normal force N pushing perpendicular to the incline
Sum the forces in the +y direction:
∑F = ma
N cos θ − mg = 0
N = mg / cos θ
Sum the forces in the radial (+x) direction:
∑F = ma
N sin θ = m v² / r
Substitute and solve for v:
(mg / cos θ) sin θ = m v² / r
g tan θ = v² / r
v = √(gr tan θ)
Plug in values:
v = √(9.8 m/s² × 48 m × tan 15°)
v = 11.2 m/s
Rounded to 2 significant figures, the maximum speed is 11 m/s.
Answer:
a. 1.027 x 10^7 m/s b. 3600 V c. 0 V and d. 1.08 MeV
Explanation:
a. KE =1/2 (MV^2) where the M is mass of electron
b. E = V/d
c. V= 0 V (momentarily the pd changes to zero)
d KE= 300*3600 v = 1.08 MeV
Answer:
a) x = (0.0114 ± 0.0001) in
, b) the number of decks is 5
Explanation:
a) The thickness of the deck of cards (d) is measured and the thickness of a card (x) is calculated
x = d / 52
x = 0.590 / 52
x = 0.011346 in
Let's look for uncertainty
Δx = dx /dd Δd
Δx = 1/52 Δd
Δx = 1/52 0.005
Δx = 0.0001 in
The result of the calculation is
x = (0.0114 ± 0.0001) in
b) You want to reduce the error to Δx = 0.00002, the number of cards to be measured is
#_cards = n 52
The formula for thickness is
x = d / n 52
Uncertainty
Δx = 1 / n 52 Δd
n = 1/52 Δd / Δx
n = 1/52 0.005 / 0.00002
n = 4.8
Since the number of decks must be an integer the number of decks is 5
Answer:
Normal stress = 66/62.84 = 1.05kips/in²
shearing stress = T/2 = 0.952/2 = 0.476 kips/in²
Explanation:
A steel pipe of 12-in. outer diameter d₂ =12in d₁= 12 -4in = 8in
4 -in.-thick
angle of 25°
Axial force P = 66 kip axial force
determine the normal and shearing stresses
Normal stress б = force/area = P/A
= 66/ (П* (d₂²-d₁²)/4
=66/ (3.142* (12²-8²)/4
= 66/62.84 = 1.05kips/in²
Tangential stress T = force* cos ∅/area = P/A
= 66* cos 25/ (П* (d₂²-d₁²)/4
=59.82/ (3.142* (12²-8²)/4
= 59.82/62.84 = 0.952kips/in²
shearing stress = tangential stress /2
= T/2 = 0.952/2 = 0.476 kips/in²